# Conjugate

For a wavefunction psi, the method psi.Conjugate() will change the wavefunction psi to its complex conjugate.

## Example

We can define the following function: $$|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1+I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.$$ Its conjugate $\psi^*$ can be calculate with the command psi.Conjugate() and is equal to: $$|\psi\rangle = \left(\frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_1 + \frac{1}{\sqrt{4}} a^{\dagger}_0 a^{\dagger}_2 + (1-I)\frac{1}{\sqrt{4}} a^{\dagger}_1 a^{\dagger}_2 \right)|0\rangle.$$

### Input

Example.Quanty
NF=3
NB=0
psi = NewWavefunction(NF, NB, {{"110",sqrt(1/4)},{"101",sqrt(1/4)},{"011",(1+I)*sqrt(1/4)}})
print(psi)
psi.Conjugate()
print(psi)

### Result

WaveFunction: Wave Function
QComplex         =          1 (Real==0 or Complex==1)
N                =          3 (Number of basis functions used to discribe psi)
NFermionic modes =          3 (Number of fermions in the one particle basis)
NBosonic modes   =          0 (Number of bosons in the one particle basis)

#      pre-factor             +I  pre-factor         Determinant
1   5.000000000000E-01         0.000000000000E+00       110
2   5.000000000000E-01         0.000000000000E+00       101
3   5.000000000000E-01         5.000000000000E-01       011

WaveFunction: Wave Function
QComplex         =          1 (Real==0 or Complex==1)
N                =          3 (Number of basis functions used to discribe psi)
NFermionic modes =          3 (Number of fermions in the one particle basis)
NBosonic modes   =          0 (Number of bosons in the one particle basis)

#      pre-factor             +I  pre-factor         Determinant
1   5.000000000000E-01        -0.000000000000E+00       110
2   5.000000000000E-01        -0.000000000000E+00       101
3   5.000000000000E-01        -5.000000000000E-01       011