Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| documentation:language_reference:objects:tightbinding:start [2024/09/16 12:37] – Sina Shokri | documentation:language_reference:objects:tightbinding:start [2024/09/18 14:35] (current) – Sina Shokri | ||
|---|---|---|---|
| Line 3: | Line 3: | ||
| ### | ### | ||
| - | the object tight-binding defines the tight-binding structure of a crystal, including the onsite energy of spin-orbitals and the local and non-local hopping among the spin-orbitals. The tight-binding object can be created directly in Lua using the function // | + | The object tight-binding defines the tight-binding structure of a crystal |
| The tight-binding objects are used to more efficiently generate cluster Hamiltonians (see // | The tight-binding objects are used to more efficiently generate cluster Hamiltonians (see // | ||
| - | ### | ||
| + | For more details see the [[documentation: | ||
| - | ===== Table of contents ===== | + | <code Quanty Example.Quanty> |
| - | {{indexmenu> | + | -- set parameters |
| + | dAB = 0.2 | ||
| + | tnn = 1.1 | ||
| + | -- create the tight binding Hamiltonian | ||
| + | HTB = NewTightBinding() | ||
| + | HTB.Name | ||
| + | HTB.Cell | ||
| + | {sqrt(3/ | ||
| + | {0,0,1}} | ||
| + | HTB.Atoms | ||
| + | {" | ||
| + | HTB.Hopping | ||
| + | {" | ||
| + | {"A.p"," | ||
| + | {" | ||
| + | {" | ||
| + | {" | ||
| + | {" | ||
| + | {" | ||
| + | } | ||
| + | |||
| + | print(" | ||
| + | print(HTB) | ||
| + | |||
| + | print(" | ||
| + | HCl = CreateClusterHamiltonian(HTB, | ||
| + | print(HCl) | ||
| + | </ | ||
| + | ### | ||
| - | ==== Result ==== | ||
| <file Quanty_Output> | <file Quanty_Output> | ||
| - | text produced as output | + | Tight-binding object: |
| + | |||
| + | Settings of a tight binding model: dichalcogenide tight binding | ||
| + | |||
| + | printout of Crystal Structure | ||
| + | Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions | ||
| + | Unit cell parameters: | ||
| + | a: | ||
| + | b: | ||
| + | c: | ||
| + | Reciprocal latice: | ||
| + | a: | ||
| + | b: | ||
| + | c: | ||
| + | Number of atoms 2 | ||
| + | # 0 | A ( 0 ) at position { | ||
| + | | p shell with 1 orbitals { 0 } | ||
| + | # 1 | B ( 5 ) at position { | ||
| + | | p shell with 1 orbitals { 0 } | ||
| + | Containing a total number of 2 orbitals | ||
| + | Hopping definitions ( 8 ) | ||
| + | Hopping from 0 : A - p to 0 : A - p with translation vector in unit cells: { 0 , 0 , 0 } ({ 0.00000000E+00 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ 0] -1.00000000E-01 | ||
| + | |||
| + | Hopping from 1 : B - p to 1 : B - p with translation vector in unit cells: { 0 , 0 , 0 } ({ 0.00000000E+00 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: { -1 , 0 , 0 } ({ 0.00000000E+00 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 1 , 0 , 0 } ({ 0.00000000E+00 -1.00000000E+00 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: { 0 , -1 , 0 } ({ 8.66025404E-01 -5.00000000E-01 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 0 , 1 , 0 } ({-8.66025404E-01 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: { -1 , -1 , 0 } ({-8.66025404E-01 -5.00000000E-01 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 1 , 1 , 0 } ({ 8.66025404E-01 | ||
| + | Matrix = | ||
| + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
| + | [ 0] | ||
| + | [ | ||
| + | |||
| + | |||
| + | |||
| + | create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis: | ||
| + | |||
| + | Operator: Operator | ||
| + | QComplex | ||
| + | MaxLength | ||
| + | NFermionic modes = 8 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis) | ||
| + | NBosonic modes | ||
| + | |||
| + | Operator of Length | ||
| + | QComplex | ||
| + | N | ||
| + | C 0 A 0 | -1.00000000000000E-01 | ||
| + | C 1 A 1 | 1.00000000000000E-01 | ||
| + | C 0 A 1 | 3.30000000000000E+00 | ||
| + | C 1 A 0 | 3.30000000000000E+00 | ||
| + | C 2 A 2 | -1.00000000000000E-01 | ||
| + | C 3 A 3 | 1.00000000000000E-01 | ||
| + | C 2 A 3 | 3.30000000000000E+00 | ||
| + | C 3 A 2 | 3.30000000000000E+00 | ||
| + | C 4 A 4 | -1.00000000000000E-01 | ||
| + | C 5 A 5 | 1.00000000000000E-01 | ||
| + | C 4 A 5 | 3.30000000000000E+00 | ||
| + | C 5 A 4 | 3.30000000000000E+00 | ||
| + | C 6 A 6 | -1.00000000000000E-01 | ||
| + | C 7 A 7 | 1.00000000000000E-01 | ||
| + | C 6 A 7 | 3.30000000000000E+00 | ||
| + | C 7 A 6 | 3.30000000000000E+00 | ||
| </ | </ | ||