| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| documentation:language_reference:functions:createresonantspectra [2016/10/10 09:41] – external edit 127.0.0.1 | documentation:language_reference:functions:createresonantspectra [2025/11/20 03:29] (current) – external edit 127.0.0.1 |
|---|
| //CreateResonantSpectra($O_1$,$O_2$,$O_3$,$O_4$,$\psi$)// calculates | //CreateResonantSpectra($O_1$,$O_2$,$O_3$,$O_4$,$\psi$)// calculates |
| \begin{equation} | \begin{equation} |
| \langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0 - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0 - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0 - O_1)} O_3 | \psi \rangle, | \langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0^{(2)} - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1)} O_3 | \psi \rangle, |
| \end{equation} | \end{equation} |
| with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. | with $E_0^{(i)} = \langle \psi | O_i | \psi \rangle$. The spectrum is returned as a spectrum object. |
| ### | ### |
| |
| * $\psi$ : Wavefunction | * $\psi$ : Wavefunction |
| * Possible options are: | * Possible options are: |
| * "NTri1" Positive integer specifying the number of states in the Krylov basis of $O_1$. (Standard value 200) | * "NTri1" Positive integer specifying the number of states in the Krylov basis of $O_1$. (Standard value 100) |
| * "NTri2" Positive integer specifying the number of states in the Krylov basis of $O_2$. (Standard value 200) | * "NTri2" Positive integer specifying the number of states in the Krylov basis of $O_2$. (Standard value 100) |
| * "epsilon" Positive real defining the smallest absolute value considered different than zero. (Standard value 1.49E-8) | * "epsilon" Positive real defining the smallest absolute value considered different than zero. (Standard value 1.49E-8) |
| * "restrictions1" A list of restrictions defining restrictions on configurations and occupations included for $O_1$ . Allows one to do restricted active space calculations. Note that the action of $O_3$ and $O_4$ are not restricted and all excitations they can make are included. | * "restrictions1" A list of restrictions defining restrictions on configurations and occupations included for $O_1$ . Allows one to do restricted active space calculations. Note that the action of $O_3$ and $O_4$ are not restricted and all excitations they can make are included. |
| ===== Output ===== | ===== Output ===== |
| |
| * //G// : Spectrum object | * //G// : Spectrum object. |
| |
| | In the case that $O_3$ ($\{O_3^a, O_3^b\}$) , $O_4$ ($\{O_4^{\alpha}, O_4^{\beta}, O_4^{\gamma}\}$) and $\psi$ ($\{\psi_1,\psi_2,\psi_3\}$) are given as tables the order of spectra returned is: |
| | |
| | $\{$ |
| | $I_1^{a,\alpha}(E_0)$, $I_1^{a,\alpha}(E_1)$, $\dots$, $I_1^{a,\alpha}(E_{N_E})$, |
| | $I_1^{a,\beta}(E_0)$, $I_1^{a,\beta}(E_1)$, $\dots$, $I_1^{a,\beta}(E_{N_E})$, |
| | $I_1^{a,\gamma}(E_0)$, $I_1^{a,\gamma}(E_1)$, $\dots$, $I_1^{a,\gamma}(E_{N_E})$, |
| | |
| | $I_1^{b,\alpha}(E_0)$, $I_1^{b,\alpha}(E_1)$, $\dots$, $I_1^{b,\alpha}(E_{N_E})$, |
| | $I_1^{b,\beta}(E_0)$, $I_1^{b,\beta}(E_1)$, $\dots$, $I_1^{b,\beta}(E_{N_E})$, |
| | $I_1^{b,\gamma}(E_0)$, $I_1^{b,\gamma}(E_1)$, $\dots$, $I_1^{b,\gamma}(E_{N_E})$, |
| | |
| | |
| | $I_2^{a,\alpha}(E_0)$, $I_2^{a,\alpha}(E_1)$, $\dots$, $I_2^{a,\alpha}(E_{N_E})$, |
| | $I_2^{a,\beta}(E_0)$, $I_2^{a,\beta}(E_1)$, $\dots$, $I_2^{a,\beta}(E_{N_E})$, |
| | $I_2^{a,\gamma}(E_0)$, $I_2^{a,\gamma}(E_1)$, $\dots$, $I_2^{a,\gamma}(E_{N_E})$, |
| | |
| | $I_2^{b,\alpha}(E_0)$, $I_2^{b,\alpha}(E_1)$, $\dots$, $I_2^{b,\alpha}(E_{N_E})$, |
| | $I_2^{b,\beta}(E_0)$, $I_2^{b,\beta}(E_1)$, $\dots$, $I_2^{b,\beta}(E_{N_E})$, |
| | $I_2^{b,\gamma}(E_0)$, $I_2^{b,\gamma}(E_1)$, $\dots$, $I_2^{b,\gamma}(E_{N_E})$, |
| | |
| | |
| | $I_3^{a,\alpha}(E_0)$, $I_3^{a,\alpha}(E_1)$, $\dots$, $I_3^{a,\alpha}(E_{N_E})$, |
| | $I_3^{a,\beta}(E_0)$, $I_3^{a,\beta}(E_1)$, $\dots$, $I_3^{a,\beta}(E_{N_E})$, |
| | $I_3^{a,\gamma}(E_0)$, $I_3^{a,\gamma}(E_1)$, $\dots$, $I_3^{a,\gamma}(E_{N_E})$, |
| | |
| | $I_3^{b,\alpha}(E_0)$, $I_3^{b,\alpha}(E_1)$, $\dots$, $I_3^{b,\alpha}(E_{N_E})$, |
| | $I_3^{b,\beta}(E_0)$, $I_3^{b,\beta}(E_1)$, $\dots$, $I_3^{b,\beta}(E_{N_E})$, |
| | $I_3^{b,\gamma}(E_0)$, $I_3^{b,\gamma}(E_1)$, $\dots$, $I_3^{b,\gamma}(E_{N_E})$ $\}$ |
| | |
| | where the alphabetic, greek and numeral indices refer to $O_3$, $O_4$ and $\psi$. |
| ===== Example ===== | ===== Example ===== |
| |
| ### | ### |
| description text | Calculates the resonant spectra for some toy Hamiltonian and transition operators. |
| ### | ### |
| |