This is an old revision of the document!


Orientation Z

Symmetry Operations

In the Cs Point Group, with orientation Z there are the following symmetry operations

Operator Orientation
$\text{E}$ $\{0,0,0\}$ ,
$\sigma _h$ $\{0,0,1\}$ ,

Different Settings

Character Table

$ $ $ \text{E} \,{\text{(1)}} $ $ \sigma_h \,{\text{(1)}} $
$ \text{A'} $ $ 1 $ $ 1 $
$ \text{A''} $ $ 1 $ $ -1 $

Product Table

$ $ $ \text{A'} $ $ \text{A''} $
$ \text{A'} $ $ \text{A'} $ $ \text{A''} $
$ \text{A''} $ $ \text{A''} $ $ \text{A'} $

Sub Groups with compatible settings

Super Groups with compatible settings

Invariant Potential expanded on renormalized spherical Harmonics

Any potential (function) can be written in spherical coordinates as a sum over spherical harmonics $$V(\vec{r}) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$. With $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics $C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$. The allowed expansion coefficients $A_{k,m}(r)$, or once evaluated for a given radial wave-function $A_{k,m}=\langle\psi(r)|A_{k,m}(r)|\psi(r)\rangle$, such that $V(\vec{r}) is invariant under all symmetry operations of the Cs Point group with orientation Z are:

Input format suitable for Mathematica (Quanty.nb)

$$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -A(1,1)+i \text{Ap}(1,1) & k=1\land m=-1 \\ A(1,1)+i \text{Ap}(1,1) & k=1\land m=1 \\ A(2,2)-i \text{Ap}(2,2) & k=2\land m=-2 \\ A(2,0) & k=2\land m=0 \\ A(2,2)+i \text{Ap}(2,2) & k=2\land m=2 \\ -A(3,3)+i \text{Ap}(3,3) & k=3\land m=-3 \\ -A(3,1)+i \text{Ap}(3,1) & k=3\land m=-1 \\ A(3,1)+i \text{Ap}(3,1) & k=3\land m=1 \\ A(3,3)+i \text{Ap}(3,3) & k=3\land m=3 \\ A(4,4)-i \text{Ap}(4,4) & k=4\land m=-4 \\ A(4,2)-i \text{Ap}(4,2) & k=4\land m=-2 \\ A(4,0) & k=4\land m=0 \\ A(4,2)+i \text{Ap}(4,2) & k=4\land m=2 \\ A(4,4)+i \text{Ap}(4,4) & k=4\land m=4 \\ -A(5,5)+i \text{Ap}(5,5) & k=5\land m=-5 \\ -A(5,3)+i \text{Ap}(5,3) & k=5\land m=-3 \\ -A(5,1)+i \text{Ap}(5,1) & k=5\land m=-1 \\ A(5,1)+i \text{Ap}(5,1) & k=5\land m=1 \\ A(5,3)+i \text{Ap}(5,3) & k=5\land m=3 \\ A(5,5)+i \text{Ap}(5,5) & k=5\land m=5 \\ A(6,6)-i \text{Ap}(6,6) & k=6\land m=-6 \\ A(6,4)-i \text{Ap}(6,4) & k=6\land m=-4 \\ A(6,2)-i \text{Ap}(6,2) & k=6\land m=-2 \\ A(6,0) & k=6\land m=0 \\ A(6,2)+i \text{Ap}(6,2) & k=6\land m=2 \\ A(6,4)+i \text{Ap}(6,4) & k=6\land m=4 \\ A(6,6)+i \text{Ap}(6,6) & k=6\land m=6 \end{cases}$$

Input format suitable for Quanty

Akm = {{0, 0, A(0,0)} ,

     {1,-1, (-1)*(A(1,1)) + ((+1*I))*(Ap(1,1))} , 
     {1, 1, A(1,1) + ((+1*I))*(Ap(1,1))} , 
     {2, 0, A(2,0)} , 
     {2,-2, A(2,2) + ((+-1*I))*(Ap(2,2))} , 
     {2, 2, A(2,2) + ((+1*I))*(Ap(2,2))} , 
     {3,-1, (-1)*(A(3,1)) + ((+1*I))*(Ap(3,1))} , 
     {3, 1, A(3,1) + ((+1*I))*(Ap(3,1))} , 
     {3,-3, (-1)*(A(3,3)) + ((+1*I))*(Ap(3,3))} , 
     {3, 3, A(3,3) + ((+1*I))*(Ap(3,3))} , 
     {4, 0, A(4,0)} , 
     {4,-2, A(4,2) + ((+-1*I))*(Ap(4,2))} , 
     {4, 2, A(4,2) + ((+1*I))*(Ap(4,2))} , 
     {4,-4, A(4,4) + ((+-1*I))*(Ap(4,4))} , 
     {4, 4, A(4,4) + ((+1*I))*(Ap(4,4))} , 
     {5,-1, (-1)*(A(5,1)) + ((+1*I))*(Ap(5,1))} , 
     {5, 1, A(5,1) + ((+1*I))*(Ap(5,1))} , 
     {5,-3, (-1)*(A(5,3)) + ((+1*I))*(Ap(5,3))} , 
     {5, 3, A(5,3) + ((+1*I))*(Ap(5,3))} , 
     {5,-5, (-1)*(A(5,5)) + ((+1*I))*(Ap(5,5))} , 
     {5, 5, A(5,5) + ((+1*I))*(Ap(5,5))} , 
     {6, 0, A(6,0)} , 
     {6,-2, A(6,2) + ((+-1*I))*(Ap(6,2))} , 
     {6, 2, A(6,2) + ((+1*I))*(Ap(6,2))} , 
     {6,-4, A(6,4) + ((+-1*I))*(Ap(6,4))} , 
     {6, 4, A(6,4) + ((+1*I))*(Ap(6,4))} , 
     {6,-6, A(6,6) + ((+-1*I))*(Ap(6,6))} , 
     {6, 6, A(6,6) + ((+1*I))*(Ap(6,6))} }

One particle coupling on a basis of spherical harmonics

Rotation matrix to symmetry adapted functions (choice is not unique)

One particle coupling on a basis of symmetry adapted functions

Potential for s orbitals

Potential for p orbitals

Potential for d orbitals

Potential for f orbitals

Potential for s-p orbital mixing

Potential for s-d orbital mixing

Potential for s-f orbital mixing

Potential for p-d orbital mixing

Potential for p-f orbital mixing

Potential for d-f orbital mixing

Table of several point groups

Return to Main page on Point Groups

Nonaxial groups C1 Cs Ci
Cn groups C2 C3 C4 C5 C6 C7 C8
Dn groups D2 D3 D4 D5 D6 D7 D8
Cnv groups C2v C3v C4v C5v C6v C7v C8v
Cnh groups C2h C3h C4h C5h C6h
Dnh groups D2h D3h D4h D5h D6h D7h D8h
Dnd groups D2d D3d D4d D5d D6d D7d D8d
Sn groups S2 S4 S6 S8 S10 S12
Cubic groups T Th Td O Oh I Ih
Linear groups C$\infty$v D$\infty$h

Print/export