Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
physics_chemistry:point_groups:oh:orientation_xyz [2018/03/23 09:28] Maurits W. Haverkortphysics_chemistry:point_groups:oh:orientation_xyz [2018/04/05 09:06] Maurits W. Haverkort
Line 1: Line 1:
 +~~CLOSETOC~~
 +
 ====== Orientation XYZ ====== ====== Orientation XYZ ======
  
Line 5: Line 7:
 ### ###
  
-In the Oh Point Group, with orientation XYZ there are the following symmetry operations{{:physics_chemistry:pointgroup:oh_xyz.png }}+In the Oh Point Group, with orientation XYZ there are the following symmetry operations
  
 ### ###
 +
 +###
 +
 +{{:physics_chemistry:pointgroup:oh_xyz.png}}
 +
 +###
 +
 ### ###
  
Line 21: Line 30:
 ^ $\sigma _h$ | $\{1,0,0\}$ , $\{0,1,0\}$ , $\{0,0,1\}$ , | ^ $\sigma _h$ | $\{1,0,0\}$ , $\{0,1,0\}$ , $\{0,0,1\}$ , |
 ^ $\sigma _d$ | $\{1,1,0\}$ , $\{1,-1,0\}$ , $\{1,0,-1\}$ , $\{1,0,1\}$ , $\{0,1,1\}$ , $\{0,1,-1\}$ , | ^ $\sigma _d$ | $\{1,1,0\}$ , $\{1,-1,0\}$ , $\{1,0,-1\}$ , $\{1,0,1\}$ , $\{0,1,1\}$ , $\{0,1,-1\}$ , |
 +
 +###
 +
 +===== Different Settings =====
 +
 +###
 +
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt2-1z|Point Group Oh with orientation 0sqrt2-1z]]
 +  * [[physics_chemistry:point_groups:oh:orientation_0sqrt21z|Point Group Oh with orientation 0sqrt21z]]
 +  * [[physics_chemistry:point_groups:oh:orientation_111z|Point Group Oh with orientation 111z]]
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt20-1z|Point Group Oh with orientation sqrt20-1z]]
 +  * [[physics_chemistry:point_groups:oh:orientation_sqrt201z|Point Group Oh with orientation sqrt201z]]
 +  * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]]
  
 ### ###
Line 60: Line 82:
 ### ###
  
-===== Other Orientations ===== +===== Sub Groups with compatible settings ===== 
-{{indexmenu>.#1}}+ 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] 
 +  * [[physics_chemistry:point_groups:c2h:orientation_z|Point Group C2h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c2v:orientation_zxy|Point Group C2v with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_x|Point Group C2 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_y|Point Group C2 with orientation Y]] 
 +  * [[physics_chemistry:point_groups:c2:orientation_z|Point Group C2 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c4h:orientation_z|Point Group C4h with orientation Z]] 
 +  * [[physics_chemistry:point_groups:c4v:orientation_zxy|Point Group C4v with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:c4:orientation_x|Point Group C4 with orientation X]] 
 +  * [[physics_chemistry:point_groups:c4:orientation_y|Point Group C4 with orientation Y]] 
 +  * [[physics_chemistry:point_groups:c4:orientation_z|Point Group C4 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:ci:orientation_|Point Group Ci with orientation ]] 
 +  * [[physics_chemistry:point_groups:cs:orientation_x|Point Group Cs with orientation X]] 
 +  * [[physics_chemistry:point_groups:cs:orientation_y|Point Group Cs with orientation Y]] 
 +  * [[physics_chemistry:point_groups:cs:orientation_z|Point Group Cs with orientation Z]] 
 +  * [[physics_chemistry:point_groups:d2d:orientation_zxy|Point Group D2d with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:d2h:orientation_xyz|Point Group D2h with orientation XYZ]] 
 +  * [[physics_chemistry:point_groups:d2:orientation_xyz|Point Group D2 with orientation XYZ]] 
 +  * [[physics_chemistry:point_groups:d3d:orientation_111|Point Group D3d with orientation 111]] 
 +  * [[physics_chemistry:point_groups:d4h:orientation_zxy|Point Group D4h with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:d4:orientation_zxy|Point Group D4 with orientation Zxy]] 
 +  * [[physics_chemistry:point_groups:o:orientation_xyz|Point Group O with orientation XYZ]] 
 +  * [[physics_chemistry:point_groups:s4:orientation_z|Point Group S4 with orientation Z]] 
 +  * [[physics_chemistry:point_groups:td:orientation_xyz|Point Group Td with orientation xyz]] 
 +  * [[physics_chemistry:point_groups:th:orientation_xyz|Point Group Th with orientation xyz]] 
 +  * [[physics_chemistry:point_groups:t:orientation_xyz|Point Group T with orientation xyz]] 
 + 
 +### 
 + 
 +===== Super Groups with compatible settings ===== 
 + 
 +### 
 + 
 +  * [[physics_chemistry:point_groups:ih:orientation_xyz|Point Group Ih with orientation xyz]] 
 + 
 +### 
 + 
 +===== Invariant Potential expanded on renormalized spherical Harmonics ===== 
 + 
 +### 
 + 
 +Any potential (function) can be written as a sum over spherical harmonics. 
 +$$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ 
 +Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ 
 +The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the Oh Point group with orientation XYZ the form of the expansion coefficients is: 
 + 
 +### 
 + 
 +==== Expansion ==== 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + A(0,0) & k=0\land m=0 \\ 
 + \sqrt{\frac{5}{14}} A(4,0) & k=4\land (m=-4\lor m=4) \\ 
 + A(4,0) & k=4\land m=0 \\ 
 + -\sqrt{\frac{7}{2}} A(6,0) & k=6\land (m=-4\lor m=4) \\ 
 + A(6,0) & k=6\land m=0 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +==== Input format suitable for Mathematica (Quanty.nb) ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {A[6, 0], k == 6 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +==== Input format suitable for Quanty ==== 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{0, 0, A(0,0)} ,  
 +       {4, 0, A(4,0)} ,  
 +       {4,-4, (sqrt(5/14))*(A(4,0))} ,  
 +       {4, 4, (sqrt(5/14))*(A(4,0))} ,  
 +       {6, 0, A(6,0)} ,  
 +       {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} ,  
 +       {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +==== One particle coupling on a basis of spherical harmonics ==== 
 + 
 +### 
 + 
 +The operator representing the potential in second quantisation is given as: 
 +$$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ 
 +For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. 
 +$$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ 
 +Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$ 
 + 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 + 
 +we can express the operator as  
 +$$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ 
 + 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 + 
 +The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter. 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{0}^{(0)}} $  ^  $ {Y_{-1}^{(1)}} $  ^  $ {Y_{0}^{(1)}} $  ^  $ {Y_{1}^{(1)}} $  ^  $ {Y_{-2}^{(2)}} $  ^  $ {Y_{-1}^{(2)}} $  ^  $ {Y_{0}^{(2)}} $  ^  $ {Y_{1}^{(2)}} $  ^  $ {Y_{2}^{(2)}} $  ^  $ {Y_{-3}^{(3)}} $  ^  $ {Y_{-2}^{(3)}} $  ^  $ {Y_{-1}^{(3)}} $  ^  $ {Y_{0}^{(3)}} $  ^  $ {Y_{1}^{(3)}} $  ^  $ {Y_{2}^{(3)}} $  ^  $ {Y_{3}^{(3)}} $  ^ 
 +^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $| 
 +^$ {Y_{0}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $| 
 +^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{5}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{0}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{5}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ 0 $| 
 +^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $|$ 0 $| 
 +^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $| 
 +^$ {Y_{0}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $| 
 +^$ {Y_{2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $| 
 +^$ {Y_{3}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $| 
 + 
 + 
 +### 
 + 
 +==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== 
 + 
 +### 
 + 
 + 
 +Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{0}^{(0)}} $  ^  $ {Y_{-1}^{(1)}} $  ^  $ {Y_{0}^{(1)}} $  ^  $ {Y_{1}^{(1)}} $  ^  $ {Y_{-2}^{(2)}} $  ^  $ {Y_{-1}^{(2)}} $  ^  $ {Y_{0}^{(2)}} $  ^  $ {Y_{1}^{(2)}} $  ^  $ {Y_{2}^{(2)}} $  ^  $ {Y_{-3}^{(3)}} $  ^  $ {Y_{-2}^{(3)}} $  ^  $ {Y_{-1}^{(3)}} $  ^  $ {Y_{0}^{(3)}} $  ^  $ {Y_{1}^{(3)}} $  ^  $ {Y_{2}^{(3)}} $  ^  $ {Y_{3}^{(3)}} $  ^ 
 +^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| 
 +^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| 
 +^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| 
 +^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| 
 +^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| 
 +^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| 
 + 
 + 
 +### 
 + 
 +==== One particle coupling on a basis of symmetry adapted functions ==== 
 + 
 +### 
 + 
 +After rotation we find 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 +|  $  $  ^  $ \text{s} $  ^  $ p_x $  ^  $ p_y $  ^  $ p_z $  ^  $ d_{x^2-y^2} $  ^  $ d_{3z^2-r^2} $  ^  $ d_{\text{yz}} $  ^  $ d_{\text{xz}} $  ^  $ d_{\text{xy}} $  ^  $ f_{\text{xyz}} $  ^  $ f_{x\left(5x^2-r^2\right)} $  ^  $ f_{y\left(5y^2-r^2\right)} $  ^  $ f_{z\left(5z^2-r^2\right)} $  ^  $ f_{x\left(y^2-z^2\right)} $  ^  $ f_{y\left(z^2-x^2\right)} $  ^  $ f_{z\left(x^2-y^2\right)} $  ^ 
 +^$ \text{s} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ p_x $|$\color{darkred}{ 0 }$|$ \text{App}(0,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_y $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| 
 +^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $| 
 +^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $|$ 0 $| 
 +^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $| 
 + 
 + 
 +### 
 + 
 +===== Coupling for a single shell ===== 
 + 
 + 
 + 
 +### 
 + 
 +Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$. 
 + 
 +### 
 + 
 + 
 + 
 +### 
 + 
 +Click on one of the subsections to expand it or <hiddenSwitch expand all>  
 + 
 +### 
 + 
 +==== Potential for s orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \text{Ea1g} & k=0\land m=0 \\ 
 + 0 & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{Ea1g, k == 0 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{0, 0, Ea1g} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{0}^{(0)}} $  ^ 
 +^$ {Y_{0}^{(0)}} $|$ \text{Ea1g} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ \text{s} $  ^ 
 +^$ \text{s} $|$ \text{Ea1g} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{0}^{(0)}} $  ^ 
 +^$ \text{s} $|$ 1 $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^$$\text{Ea1g}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_0_1.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for p orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \text{Et1u} & k=0\land m=0 \\ 
 + 0 & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{Et1u, k == 0 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{0, 0, Et1u} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-1}^{(1)}} $  ^  $ {Y_{0}^{(1)}} $  ^  $ {Y_{1}^{(1)}} $  ^ 
 +^$ {Y_{-1}^{(1)}} $|$ \text{Et1u} $|$ 0 $|$ 0 $| 
 +^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Et1u} $|$ 0 $| 
 +^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Et1u} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ p_x $  ^  $ p_y $  ^  $ p_z $  ^ 
 +^$ p_x $|$ \text{Et1u} $|$ 0 $|$ 0 $| 
 +^$ p_y $|$ 0 $|$ \text{Et1u} $|$ 0 $| 
 +^$ p_z $|$ 0 $|$ 0 $|$ \text{Et1u} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-1}^{(1)}} $  ^  $ {Y_{0}^{(1)}} $  ^  $ {Y_{1}^{(1)}} $  ^ 
 +^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| 
 +^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $| 
 +^$ p_z $|$ 0 $|$ 1 $|$ 0 $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_1_1.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} x$$ | ::: | 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_1_2.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} y$$ | ::: | 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_1_3.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} z$$ | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for d orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \frac{2 \text{Eeg}}{5}+\frac{3 \text{Et2g}}{5} & k=0\land m=0 \\ 
 + \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Eeg}-\text{Et2g}) & k=4\land (m=-4\lor m=4) \\ 
 + \frac{21 (\text{Eeg}-\text{Et2g})}{10} & k=4\land m=0 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{(2*Eeg)/5 + (3*Et2g)/5, k == 0 && m == 0}, {(3*Sqrt[7/10]*(Eeg - Et2g))/2, k == 4 && (m == -4 || m == 4)}, {(21*(Eeg - Et2g))/10, k == 4 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{0, 0, (2/5)*(Eeg) + (3/5)*(Et2g)} ,  
 +       {4, 0, (21/10)*(Eeg + (-1)*(Et2g))} ,  
 +       {4,-4, (3/2)*((sqrt(7/10))*(Eeg + (-1)*(Et2g)))} ,  
 +       {4, 4, (3/2)*((sqrt(7/10))*(Eeg + (-1)*(Et2g)))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-2}^{(2)}} $  ^  $ {Y_{-1}^{(2)}} $  ^  $ {Y_{0}^{(2)}} $  ^  $ {Y_{1}^{(2)}} $  ^  $ {Y_{2}^{(2)}} $  ^ 
 +^$ {Y_{-2}^{(2)}} $|$ \frac{\text{Eeg}+\text{Et2g}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eeg}-\text{Et2g}}{2} $| 
 +^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Et2g} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Eeg} $|$ 0 $|$ 0 $| 
 +^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2g} $|$ 0 $| 
 +^$ {Y_{2}^{(2)}} $|$ \frac{\text{Eeg}-\text{Et2g}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Eeg}+\text{Et2g}}{2} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ d_{x^2-y^2} $  ^  $ d_{3z^2-r^2} $  ^  $ d_{\text{yz}} $  ^  $ d_{\text{xz}} $  ^  $ d_{\text{xy}} $  ^ 
 +^$ d_{x^2-y^2} $|$ \text{Eeg} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ d_{3z^2-r^2} $|$ 0 $|$ \text{Eeg} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ d_{\text{yz}} $|$ 0 $|$ 0 $|$ \text{Et2g} $|$ 0 $|$ 0 $| 
 +^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2g} $|$ 0 $| 
 +^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2g} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-2}^{(2)}} $  ^  $ {Y_{-1}^{(2)}} $  ^  $ {Y_{0}^{(2)}} $  ^  $ {Y_{1}^{(2)}} $  ^  $ {Y_{2}^{(2)}} $  ^ 
 +^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $| 
 +^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $| 
 +^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $| 
 +^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $| 
 +^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^$$\text{Eeg}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_2_1.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right)$$ | ::: | 
 +^ ^$$\text{Eeg}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_2_2.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1)$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right)$$ | ::: | 
 +^ ^$$\text{Et2g}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_2_3.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} y z$$ | ::: | 
 +^ ^$$\text{Et2g}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_2_4.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x z$$ | ::: | 
 +^ ^$$\text{Et2g}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_2_5.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x y$$ | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +==== Potential for f orbitals ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + \frac{1}{7} (\text{Ea2u}+3 (\text{Et1u}+\text{Et2u})) & k=0\land m=0 \\ 
 + -\frac{3}{4} \sqrt{\frac{5}{14}} (2 \text{Ea2u}-3 \text{Et1u}+\text{Et2u}) & k=4\land (m=-4\lor m=4) \\ 
 + -\frac{3}{4} (2 \text{Ea2u}-3 \text{Et1u}+\text{Et2u}) & k=4\land m=0 \\ 
 + -\frac{39 (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u})}{40 \sqrt{14}} & k=6\land (m=-4\lor m=4) \\ 
 + \frac{39}{280} (4 \text{Ea2u}+5 \text{Et1u}-9 \text{Et2u}) & k=6\land m=0 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{(Ea2u + 3*(Et1u + Et2u))/7, k == 0 && m == 0}, {(-3*Sqrt[5/14]*(2*Ea2u - 3*Et1u + Et2u))/4, k == 4 && (m == -4 || m == 4)}, {(-3*(2*Ea2u - 3*Et1u + Et2u))/4, k == 4 && m == 0}, {(-39*(4*Ea2u + 5*Et1u - 9*Et2u))/(40*Sqrt[14]), k == 6 && (m == -4 || m == 4)}, {(39*(4*Ea2u + 5*Et1u - 9*Et2u))/280, k == 6 && m == 0}}, 0] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{0, 0, (1/7)*(Ea2u + (3)*(Et1u + Et2u))} ,  
 +       {4, 0, (-3/4)*((2)*(Ea2u) + (-3)*(Et1u) + Et2u)} ,  
 +       {4,-4, (-3/4)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} ,  
 +       {4, 4, (-3/4)*((sqrt(5/14))*((2)*(Ea2u) + (-3)*(Et1u) + Et2u))} ,  
 +       {6, 0, (39/280)*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u))} ,  
 +       {6,-4, (-39/40)*((1/(sqrt(14)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} ,  
 +       {6, 4, (-39/40)*((1/(sqrt(14)))*((4)*(Ea2u) + (5)*(Et1u) + (-9)*(Et2u)))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-3}^{(3)}} $  ^  $ {Y_{-2}^{(3)}} $  ^  $ {Y_{-1}^{(3)}} $  ^  $ {Y_{0}^{(3)}} $  ^  $ {Y_{1}^{(3)}} $  ^  $ {Y_{2}^{(3)}} $  ^  $ {Y_{3}^{(3)}} $  ^ 
 +^$ {Y_{-3}^{(3)}} $|$ \frac{1}{8} (5 \text{Et1u}+3 \text{Et2u}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1u}-\text{Et2u}) $|$ 0 $|$ 0 $| 
 +^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \frac{\text{Ea2u}+\text{Et2u}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Et2u}-\text{Ea2u}}{2} $|$ 0 $| 
 +^$ {Y_{-1}^{(3)}} $|$ 0 $|$ 0 $|$ \frac{1}{8} (3 \text{Et1u}+5 \text{Et2u}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1u}-\text{Et2u}) $| 
 +^$ {Y_{0}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et1u} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ {Y_{1}^{(3)}} $|$ \frac{1}{8} \sqrt{15} (\text{Et1u}-\text{Et2u}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} (3 \text{Et1u}+5 \text{Et2u}) $|$ 0 $|$ 0 $| 
 +^$ {Y_{2}^{(3)}} $|$ 0 $|$ \frac{\text{Et2u}-\text{Ea2u}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ea2u}+\text{Et2u}}{2} $|$ 0 $| 
 +^$ {Y_{3}^{(3)}} $|$ 0 $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1u}-\text{Et2u}) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{8} (5 \text{Et1u}+3 \text{Et2u}) $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ f_{\text{xyz}} $  ^  $ f_{x\left(5x^2-r^2\right)} $  ^  $ f_{y\left(5y^2-r^2\right)} $  ^  $ f_{z\left(5z^2-r^2\right)} $  ^  $ f_{x\left(y^2-z^2\right)} $  ^  $ f_{y\left(z^2-x^2\right)} $  ^  $ f_{z\left(x^2-y^2\right)} $  ^ 
 +^$ f_{\text{xyz}} $|$ \text{Ea2u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(5x^2-r^2\right)} $|$ 0 $|$ \text{Et1u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{y\left(5y^2-r^2\right)} $|$ 0 $|$ 0 $|$ \text{Et1u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et1u} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(y^2-z^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2u} $|$ 0 $|$ 0 $| 
 +^$ f_{y\left(z^2-x^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2u} $|$ 0 $| 
 +^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et2u} $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Rotation matrix used** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-3}^{(3)}} $  ^  $ {Y_{-2}^{(3)}} $  ^  $ {Y_{-1}^{(3)}} $  ^  $ {Y_{0}^{(3)}} $  ^  $ {Y_{1}^{(3)}} $  ^  $ {Y_{2}^{(3)}} $  ^  $ {Y_{3}^{(3)}} $  ^ 
 +^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| 
 +^$ f_{x\left(5x^2-r^2\right)} $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| 
 +^$ f_{y\left(5y^2-r^2\right)} $|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| 
 +^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ f_{x\left(y^2-z^2\right)} $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| 
 +^$ f_{y\left(z^2-x^2\right)} $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| 
 +^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Irriducible representations and their onsite energy** > 
 + 
 +### 
 + 
 +^ ^$$\text{Ea2u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_1.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z$$ | ::: | 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_2.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right)$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right)$$ | ::: | 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_3.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right)$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right)$$ | ::: | 
 +^ ^$$\text{Et1u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_4.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)$$ | ::: | 
 +^ ^$$\text{Et2u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_5.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right)$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right)$$ | ::: | 
 +^ ^$$\text{Et2u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_6.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right)$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right)$$ | ::: | 
 +^ ^$$\text{Et2u}$$ | {{:physics_chemistry:pointgroup:oh_xyz_orb_3_7.png?150}} | 
 +|$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )$$ | ::: | 
 +|$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)$$ | ::: | 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +===== Coupling between two shells ===== 
 + 
 + 
 + 
 +### 
 + 
 +Click on one of the subsections to expand it or <hiddenSwitch expand all>  
 + 
 +### 
 + 
 +==== Potential for p-f orbital mixing ==== 
 + 
 +<hidden **Potential parameterized with onsite energies of irriducible representations** > 
 + 
 +### 
 + 
 + $$A_{k,m} = \begin{cases} 
 + 0 & k\neq 4\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ 
 + \frac{3}{4} \sqrt{\frac{15}{2}} \text{Mt1u} & k=4\land (m=-4\lor m=4) \\ 
 + \frac{3 \sqrt{21} \text{Mt1u}}{4} & \text{True} 
 +\end{cases}$$ 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **Input format suitable for Mathematica (Quanty.nb)** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty.nb> 
 + 
 +Akm[k_,m_]:=Piecewise[{{0, k != 4 || (m != -4 && m != 0 && m != 4)}, {(3*Sqrt[15/2]*Mt1u)/4, k == 4 && (m == -4 || m == 4)}}, (3*Sqrt[21]*Mt1u)/4] 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden><hidden **Input format suitable for Quanty** > 
 + 
 +### 
 + 
 +<code Quanty Akm_Oh_XYZ.Quanty> 
 + 
 +Akm = {{4, 0, (3/4)*((sqrt(21))*(Mt1u))} ,  
 +       {4,-4, (3/4)*((sqrt(15/2))*(Mt1u))} ,  
 +       {4, 4, (3/4)*((sqrt(15/2))*(Mt1u))} } 
 + 
 +</code> 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of spherical Harmonics** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ {Y_{-3}^{(3)}} $  ^  $ {Y_{-2}^{(3)}} $  ^  $ {Y_{-1}^{(3)}} $  ^  $ {Y_{0}^{(3)}} $  ^  $ {Y_{1}^{(3)}} $  ^  $ {Y_{2}^{(3)}} $  ^  $ {Y_{3}^{(3)}} $  ^ 
 +^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ -\frac{1}{2} \sqrt{\frac{3}{2}} \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{2} \sqrt{\frac{5}{2}} \text{Mt1u} $| 
 +^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ {Y_{1}^{(1)}} $|$ -\frac{1}{2} \sqrt{\frac{5}{2}} \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{2} \sqrt{\frac{3}{2}} \text{Mt1u} $|$ 0 $|$ 0 $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 +<hidden **The Hamiltonian on a basis of symmetric functions** > 
 + 
 +### 
 + 
 +|  $  $  ^  $ f_{\text{xyz}} $  ^  $ f_{x\left(5x^2-r^2\right)} $  ^  $ f_{y\left(5y^2-r^2\right)} $  ^  $ f_{z\left(5z^2-r^2\right)} $  ^  $ f_{x\left(y^2-z^2\right)} $  ^  $ f_{y\left(z^2-x^2\right)} $  ^  $ f_{z\left(x^2-y^2\right)} $  ^ 
 +^$ p_x $|$ 0 $|$ \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_y $|$ 0 $|$ 0 $|$ \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| 
 +^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \text{Mt1u} $|$ 0 $|$ 0 $|$ 0 $| 
 + 
 + 
 +### 
 + 
 +</hidden> 
 + 
 +===== Table of several point groups ===== 
 + 
 +### 
 + 
 +[[physics_chemistry:point_groups|Return to Main page on Point Groups]] 
 + 
 +### 
 + 
 +### 
 + 
 +^Nonaxial groups      | [[physics_chemistry:point_groups:c1|C]]<sub>[[physics_chemistry:point_groups:c1|1]]</sub> | [[physics_chemistry:point_groups:cs|C]]<sub>[[physics_chemistry:point_groups:cs|s]]</sub> | [[physics_chemistry:point_groups:ci|C]]<sub>[[physics_chemistry:point_groups:ci|i]]</sub> | | | | | 
 +^C<sub>n</sub> groups | [[physics_chemistry:point_groups:c2|C]]<sub>[[physics_chemistry:point_groups:c2|2]]</sub> | [[physics_chemistry:point_groups:c3|C]]<sub>[[physics_chemistry:point_groups:c3|3]]</sub> | [[physics_chemistry:point_groups:c4|C]]<sub>[[physics_chemistry:point_groups:c4|4]]</sub> | [[physics_chemistry:point_groups:c5|C]]<sub>[[physics_chemistry:point_groups:c5|5]]</sub> | [[physics_chemistry:point_groups:c6|C]]<sub>[[physics_chemistry:point_groups:c6|6]]</sub> | [[physics_chemistry:point_groups:c7|C]]<sub>[[physics_chemistry:point_groups:c7|7]]</sub> | [[physics_chemistry:point_groups:c8|C]]<sub>[[physics_chemistry:point_groups:c8|8]]</sub> |  
 +^D<sub>n</sub> groups | [[physics_chemistry:point_groups:d2|D]]<sub>[[physics_chemistry:point_groups:d2|2]]</sub> | [[physics_chemistry:point_groups:d3|D]]<sub>[[physics_chemistry:point_groups:d3|3]]</sub> | [[physics_chemistry:point_groups:d4|D]]<sub>[[physics_chemistry:point_groups:d4|4]]</sub> | [[physics_chemistry:point_groups:d5|D]]<sub>[[physics_chemistry:point_groups:d5|5]]</sub> | [[physics_chemistry:point_groups:d6|D]]<sub>[[physics_chemistry:point_groups:d6|6]]</sub> | [[physics_chemistry:point_groups:d7|D]]<sub>[[physics_chemistry:point_groups:d7|7]]</sub> | [[physics_chemistry:point_groups:d8|D]]<sub>[[physics_chemistry:point_groups:d8|8]]</sub> |  
 +^C<sub>nv</sub> groups | [[physics_chemistry:point_groups:c2v|C]]<sub>[[physics_chemistry:point_groups:c2v|2v]]</sub> | [[physics_chemistry:point_groups:c3v|C]]<sub>[[physics_chemistry:point_groups:c3v|3v]]</sub> | [[physics_chemistry:point_groups:c4v|C]]<sub>[[physics_chemistry:point_groups:c4v|4v]]</sub> | [[physics_chemistry:point_groups:c5v|C]]<sub>[[physics_chemistry:point_groups:c5v|5v]]</sub> | [[physics_chemistry:point_groups:c6v|C]]<sub>[[physics_chemistry:point_groups:c6v|6v]]</sub> | [[physics_chemistry:point_groups:c7v|C]]<sub>[[physics_chemistry:point_groups:c7v|7v]]</sub> | [[physics_chemistry:point_groups:c8v|C]]<sub>[[physics_chemistry:point_groups:c8v|8v]]</sub> |  
 +^C<sub>nh</sub> groups | [[physics_chemistry:point_groups:c2h|C]]<sub>[[physics_chemistry:point_groups:c2h|2h]]</sub> | [[physics_chemistry:point_groups:c3h|C]]<sub>[[physics_chemistry:point_groups:c3h|3h]]</sub> | [[physics_chemistry:point_groups:c4h|C]]<sub>[[physics_chemistry:point_groups:c4h|4h]]</sub> | [[physics_chemistry:point_groups:c5h|C]]<sub>[[physics_chemistry:point_groups:c5h|5h]]</sub> | [[physics_chemistry:point_groups:c6h|C]]<sub>[[physics_chemistry:point_groups:c6h|6h]]</sub> | | |  
 +^D<sub>nh</sub> groups | [[physics_chemistry:point_groups:d2h|D]]<sub>[[physics_chemistry:point_groups:d2h|2h]]</sub> | [[physics_chemistry:point_groups:d3h|D]]<sub>[[physics_chemistry:point_groups:d3h|3h]]</sub> | [[physics_chemistry:point_groups:d4h|D]]<sub>[[physics_chemistry:point_groups:d4h|4h]]</sub> | [[physics_chemistry:point_groups:d5h|D]]<sub>[[physics_chemistry:point_groups:d5h|5h]]</sub> | [[physics_chemistry:point_groups:d6h|D]]<sub>[[physics_chemistry:point_groups:d6h|6h]]</sub> | [[physics_chemistry:point_groups:d7h|D]]<sub>[[physics_chemistry:point_groups:d7h|7h]]</sub> | [[physics_chemistry:point_groups:d8h|D]]<sub>[[physics_chemistry:point_groups:d8h|8h]]</sub> |  
 +^D<sub>nd</sub> groups | [[physics_chemistry:point_groups:d2d|D]]<sub>[[physics_chemistry:point_groups:d2d|2d]]</sub> | [[physics_chemistry:point_groups:d3d|D]]<sub>[[physics_chemistry:point_groups:d3d|3d]]</sub> | [[physics_chemistry:point_groups:d4d|D]]<sub>[[physics_chemistry:point_groups:d4d|4d]]</sub> | [[physics_chemistry:point_groups:d5d|D]]<sub>[[physics_chemistry:point_groups:d5d|5d]]</sub> | [[physics_chemistry:point_groups:d6d|D]]<sub>[[physics_chemistry:point_groups:d6d|6d]]</sub> | [[physics_chemistry:point_groups:d7d|D]]<sub>[[physics_chemistry:point_groups:d7d|7d]]</sub> | [[physics_chemistry:point_groups:d8d|D]]<sub>[[physics_chemistry:point_groups:d8d|8d]]</sub> |  
 +^S<sub>n</sub> groups | [[physics_chemistry:point_groups:S2|S]]<sub>[[physics_chemistry:point_groups:S2|2]]</sub> | [[physics_chemistry:point_groups:S4|S]]<sub>[[physics_chemistry:point_groups:S4|4]]</sub> | [[physics_chemistry:point_groups:S6|S]]<sub>[[physics_chemistry:point_groups:S6|6]]</sub> | [[physics_chemistry:point_groups:S8|S]]<sub>[[physics_chemistry:point_groups:S8|8]]</sub> | [[physics_chemistry:point_groups:S10|S]]<sub>[[physics_chemistry:point_groups:S10|10]]</sub> | [[physics_chemistry:point_groups:S12|S]]<sub>[[physics_chemistry:point_groups:S12|12]]</sub> |  |  
 +^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]]<sub>[[physics_chemistry:point_groups:Th|h]]</sub> | [[physics_chemistry:point_groups:Td|T]]<sub>[[physics_chemistry:point_groups:Td|d]]</sub> | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]]<sub>[[physics_chemistry:point_groups:Oh|h]]</sub> | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]]<sub>[[physics_chemistry:point_groups:Ih|h]]</sub> |  
 +^Linear groups      | [[physics_chemistry:point_groups:cinfv|C]]<sub>[[physics_chemistry:point_groups:cinfv|$\infty$v]]</sub> | [[physics_chemistry:point_groups:cinfv|D]]<sub>[[physics_chemistry:point_groups:dinfh|$\infty$h]]</sub> | | | | | | 
 + 
 +###
Print/export