Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
documentation:standard_operators:coulomb_repulsion [2017/02/27 11:28] Maurits W. Haverkortdocumentation:standard_operators:coulomb_repulsion [2017/02/27 14:59] Maurits W. Haverkort
Line 63: Line 63:
  
 ### ###
-For the case where $n_1=n_2=n_3=n_4$ and $l_1=l_2=l_3=l_4$, i.e. Coulomb repulsion within one shell one defines:+{{:documentation:standard_operators:coulomb_diagram_lll.png?nolink&200 |}}For the case where $n_1=n_2=n_3=n_4$ and $l_1=l_2=l_3=l_4$, i.e. Coulomb repulsion within one shell one defines:
 \begin{equation} \begin{equation}
 F^{(k)} = R^{(k)}[\tau_1\tau_2\tau_3\tau_4]. F^{(k)} = R^{(k)}[\tau_1\tau_2\tau_3\tau_4].
Line 71: Line 71:
 NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals) NewOperator("U", NF, IndexUp, IndexDn, SlaterIntegrals)
 </code> </code>
-whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$.+whereby SlaterIntegrals represents a list of $F^{(k)}$ with $k$ running from $0$ to $2l$ in steps of $2$, i.e. $k$ is even.
 ### ###
  
Line 85: Line 85:
  
 ===== Two shells, shell occupation conserving ===== ===== Two shells, shell occupation conserving =====
 +
  
 ### ###
-The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($l_1=l_3$ and $l_2=l_4$) and an indirect or exchange term ($l_1=l_4$ and $l_2=l_3$). The direct term is given by the Slater integrals:+{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink&400 |}}The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($n_1l_1=n_3l_3$ and $n_2l_2=n_4l_4$) and an indirect or exchange term ($n_1l_1=n_4l_4$ and $n_2l_2=n_3l_3$). We here assume that $n_1l_1\neq n_2l_2$. The direct term is given by the Slater integrals:
 \begin{equation} \begin{equation}
 F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j, F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2. +with $0 \leq k \leq \mathrm{Min}[2l_1,2l_2]$ in steps of 2, i.e. $k$ is even
  
 The indirect term is given by the exchange integrals: The indirect term is given by the exchange integrals:
Line 97: Line 98:
 G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j, G^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]R_1[r_j]R_2[r_i]R_2[r_j]\mathrm{d}r_i\mathrm{d}r_j,
 \end{equation} \end{equation}
-with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2.+with $|l_1-l_2| \leq k \leq |l_1+l_2|$ in steps of 2, i.e. $k$ is even if both $l_1$ and $l_2$ are even or odd and $k$ is odd if one of the angular momenta involved is even and the other is odd.
 ### ###
  
Line 115: Line 116:
 ### ###
  
 +===== General case of 4 different shells =====
 +
 +###
 +{{:documentation:standard_operators:coulomb_diagram_llll.png?nolink&200 |}}The Coulomb repulsion in the general case allows four different principle quantum numbers and angular momenta. The radial integral is given as:
 +\begin{equation}
 +R^{(k)}[n_1l_1\:n_2l_2\:n_3l_3\:n_4l_4]=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_{n_1l_1}[r_i]R_{n_2l_2}[r_j]R_{n_3l_3}[r_i]R_{n_4l_4}[r_j]\mathrm{d}r_i\mathrm{d}r_j,
 +\end{equation}
 +with $\mathrm{Max}[|l_1-l_3|,|l_2-l_4|] \leq k \leq \mathrm{Min}[l_1+l_3,l_2+l_4]$ and $(l_1+l_3)$, $(l2_+l_4)$ either both even or both odd.
 +###
 +
 +###
 +In Quanty one can implement these operators as:
 +<code Quanty Example.Quanty>
 +NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, IndexUp_3, IndexDn_3, IndexUp_4, IndexDn_4, Rk)
 +</code>
 +For $l_1=3$, $l_2=0$, $l_3=2$ and $l_4=1$ one has $k=1$ and one could define:
 +<code Quanty Example.Quanty>
 +OppR1pd = NewOperator("U", NF, IndexUp_1, IndexDn_1, IndexUp_2, IndexDn_2, IndexUp_3, IndexDn_3, IndexUp_4, IndexDn_4, {1})
 +</code>
 +###
 +
 +###
 +Note that in the general case you need to sum over all possible permutations of $n_1l_1$, $n_2l_2$, $n_3l_3$ and $n_4l_4$. Permuting $n_1l_1$ with $n_2l_2$ and at the same time $n_3l_3$ with $n_4l_4$ will not change the value and form of the operator. If $n_1l_1$ is different from $n_2l_2$ and $n_3l_3$ is different from $n_4l_4$ one can add a factor of two in front of the operator and only add one of the permutations. If one of the $n_1l_1$ is the same as $n_2l_2$ or $n_3l_3$ is the same as $n_4l_4$ a permutation will not lead to a new configuration and the factor of two disappears. If you just sum over all possible $n_il_i$ combinations things go right automatically. 
 +###
  
 ===== Table of contents ===== ===== Table of contents =====
 {{indexmenu>.#1|msort nsort}} {{indexmenu>.#1|msort nsort}}
Print/export