Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Last revisionBoth sides next revision
documentation:standard_operators:coulomb_repulsion [2017/02/27 13:38] Maurits W. Haverkortdocumentation:standard_operators:coulomb_repulsion [2017/02/27 14:59] Maurits W. Haverkort
Line 88: Line 88:
  
 ### ###
-{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink&400 |}}The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($l_1=l_3$ and $l_2=l_4$) and an indirect or exchange term ($l_1=l_4$ and $l_2=l_3$). The direct term is given by the Slater integrals:+{{:documentation:standard_operators:coulomb_diagram_ll.png?nolink&400 |}}The Coulomb repulsion between two shells which does not change the number of electrons is given by a direct term ($n_1l_1=n_3l_3$ and $n_2l_2=n_4l_4$) and an indirect or exchange term ($n_1l_1=n_4l_4$ and $n_2l_2=n_3l_3$). We here assume that $n_1l_1\neq n_2l_2$. The direct term is given by the Slater integrals:
 \begin{equation} \begin{equation}
 F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j, F^{(k)}=e^2\int_0^{\infty}\int_0^{\infty}\frac{\mathrm{Min}[r_i,r_j]^k}{\mathrm{Max}[r_i,r_j]^{k+1}}R_1[r_i]^2R_2[r_j]^2\mathrm{d}r_i\mathrm{d}r_j,
Print/export