This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
documentation:language_reference:functions:rotate [2019/08/07 10:26]
Simon Heinze
documentation:language_reference:functions:rotate [2019/08/07 10:51] (current)
Simon Heinze Major Update, including the mentioning of the rotation convention
Line 2: Line 2:
 ### ###
-//​Rotate($\psi$,​ $R$)// ​or //​Rotate($O$,​ $R$)// rotates the basis of a wave-function ​or operator.+//​Rotate($M$,​ $R$)//, ​//​Rotate($\psi$,​ $R$)////Rotate($O$, $R$)// or //​Rotate($TB$, $R$)// rotates the basis of a quadratic matrix, ​a wave-function, an operator, or a tight-binding object (passive transformation). For a matrix it thus returns $R^\ast \cdot M \cdot R^T$, where $R^\ast$ denotes the complex conjugate and $R^T$ the transpose of the rotation matrix $R$. 
 +$R$ needs to be a matrix of dimension $N_1\times N_2$, where $N_2$ equals the number of rows of $M$, or $N_{Fermion}+N_{Boson}$ of $\psi$, $O$ or $TB$. The rotation matrix $R$ is not required to be quadratic, it is therefore possible to use rotations to change the number of dimensions of the Hilbert-space. 
 +$R^\ast \cdot R^T = 1$ is not checked by Quanty, to allow scaling rotations. 
 ### ###
 ===== Input ===== ===== Input =====
-  * psi or Opp Wavefunction ​or operator +  * $M$, $\psi$, $O$ or $TB$ a quadratic (complex ​or real valued) matrix, a wave-function,​ an operator, or a tight-binding object. 
-  * rotmat ​matrix of dimension NFermion+NBoson (table of tables) ​or real or complex numbers+  * $R$ a complex ​or real valued generalised rotation matrix.
 ===== Output ===== ===== Output =====
-  * psi or Opp Wavefunction or operator+  * $M^\prime$, $\psi^\prime$, $O^\prime$ ​or $TB^\prime$ ​the rotated quadratic matrix, wave-function, ​operator, or tight-binding object.
 ===== Example ===== ===== Example =====