Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
documentation:language_reference:functions:createresonantspectra [2016/10/10 09:41] – external edit 127.0.0.1documentation:language_reference:functions:createresonantspectra [2017/09/26 21:38] Maurits W. Haverkort
Line 4: Line 4:
 //CreateResonantSpectra($O_1$,$O_2$,$O_3$,$O_4$,$\psi$)// calculates  //CreateResonantSpectra($O_1$,$O_2$,$O_3$,$O_4$,$\psi$)// calculates 
 \begin{equation} \begin{equation}
-\langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0 - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0 - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0 - O_1)} O_3 | \psi \rangle,+\langle \psi | O_3^{\dagger} \frac{1}{(\omega_1 - \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1^{\dagger})} O_4^{\dagger} \frac{1}{(\omega_2 + \mathrm{i} \Gamma_2/2 + E_0^{(2)} - O_2)} O_4\frac{1}{(\omega_1 + \mathrm{i} \Gamma_1/2 + E_0^{(1)} - O_1)} O_3 | \psi \rangle,
 \end{equation} \end{equation}
-with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. +with $E_0^{(i)} = \langle \psi | O_i | \psi \rangle$. The spectrum is returned as a spectrum object. 
 ### ###
  
Line 33: Line 33:
 ===== Output ===== ===== Output =====
  
-  * //G// : Spectrum object+  * //G// : Spectrum object
  
 +In the case that $O_3$ ($\{O_3^a, O_3^b\}$) , $O_4$ ($\{O_4^{\alpha}, O_4^{\beta}, O_4^{\gamma}\}$) and $\psi$ ($\{\psi_1,\psi_2,\psi_3\}$) are given as tables the order of spectra returned is:
 +
 +$\{$
 +$I_1^{a,\alpha}(E_0)$, $I_1^{a,\alpha}(E_1)$, $\dots$, $I_1^{a,\alpha}(E_{N_E})$,
 +$I_1^{a,\beta}(E_0)$,  $I_1^{a,\beta}(E_1)$,  $\dots$, $I_1^{a,\beta}(E_{N_E})$,
 +$I_1^{a,\gamma}(E_0)$, $I_1^{a,\gamma}(E_1)$, $\dots$, $I_1^{a,\gamma}(E_{N_E})$,
 +     
 +$I_1^{b,\alpha}(E_0)$, $I_1^{b,\alpha}(E_1)$, $\dots$, $I_1^{b,\alpha}(E_{N_E})$,
 +$I_1^{b,\beta}(E_0)$,  $I_1^{b,\beta}(E_1)$,  $\dots$, $I_1^{b,\beta}(E_{N_E})$,
 +$I_1^{b,\gamma}(E_0)$, $I_1^{b,\gamma}(E_1)$, $\dots$, $I_1^{b,\gamma}(E_{N_E})$,
 +     
 +     
 +$I_2^{a,\alpha}(E_0)$, $I_2^{a,\alpha}(E_1)$, $\dots$, $I_2^{a,\alpha}(E_{N_E})$,
 +$I_2^{a,\beta}(E_0)$,  $I_2^{a,\beta}(E_1)$,  $\dots$, $I_2^{a,\beta}(E_{N_E})$,
 +$I_2^{a,\gamma}(E_0)$, $I_2^{a,\gamma}(E_1)$, $\dots$, $I_2^{a,\gamma}(E_{N_E})$,
 +     
 +$I_2^{b,\alpha}(E_0)$, $I_2^{b,\alpha}(E_1)$, $\dots$, $I_2^{b,\alpha}(E_{N_E})$,
 +$I_2^{b,\beta}(E_0)$,  $I_2^{b,\beta}(E_1)$,  $\dots$, $I_2^{b,\beta}(E_{N_E})$,
 +$I_2^{b,\gamma}(E_0)$, $I_2^{b,\gamma}(E_1)$, $\dots$, $I_2^{b,\gamma}(E_{N_E})$,
 +     
 +     
 +$I_3^{a,\alpha}(E_0)$, $I_3^{a,\alpha}(E_1)$, $\dots$, $I_3^{a,\alpha}(E_{N_E})$,
 +$I_3^{a,\beta}(E_0)$,  $I_3^{a,\beta}(E_1)$,  $\dots$, $I_3^{a,\beta}(E_{N_E})$,
 +$I_3^{a,\gamma}(E_0)$, $I_3^{a,\gamma}(E_1)$, $\dots$, $I_3^{a,\gamma}(E_{N_E})$,
 +     
 +$I_3^{b,\alpha}(E_0)$, $I_3^{b,\alpha}(E_1)$, $\dots$, $I_3^{b,\alpha}(E_{N_E})$,
 +$I_3^{b,\beta}(E_0)$,  $I_3^{b,\beta}(E_1)$,  $\dots$, $I_3^{b,\beta}(E_{N_E})$,
 +$I_3^{b,\gamma}(E_0)$, $I_3^{b,\gamma}(E_1)$, $\dots$, $I_3^{b,\gamma}(E_{N_E})$ $\}$
 +
 +where the alphabetic, greek and numeral indices refer to $O_3$, $O_4$ and $\psi$.
 ===== Example ===== ===== Example =====
  
 ### ###
-description text+Calculates the resonant spectra for some toy Hamiltonian and transition operators.
 ### ###
  
Print/export