Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
documentation:language_reference:functions:createfluorescenceyield [2018/05/12 22:50]
Maurits W. Haverkort
documentation:language_reference:functions:createfluorescenceyield [2018/05/12 22:50] (current)
Maurits W. Haverkort
Line 4: Line 4:
 //​CreateFluorescenceYield($O_1$,​$O_2$,​$O_3$,​$\psi$)//​ calculates ​ //​CreateFluorescenceYield($O_1$,​$O_2$,​$O_3$,​$\psi$)//​ calculates ​
 \begin{equation} \begin{equation}
-\frac{ ​\langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle,+\langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle,
 \end{equation} \end{equation}
 with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are: with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are:
Print/export