# Differences

This shows you the differences between two versions of the page.

 documentation:language_reference:functions:createfluorescenceyield [2018/05/12 22:50]Maurits W. Haverkort documentation:language_reference:functions:createfluorescenceyield [2018/05/12 22:50] (current)Maurits W. Haverkort Both sides previous revision Previous revision 2018/05/12 22:50 Maurits W. Haverkort 2018/05/12 22:50 Maurits W. Haverkort 2018/05/12 22:49 Maurits W. Haverkort 2016/10/10 09:41 external edit2016/10/09 22:03 Maurits W. Haverkort created 2018/05/12 22:50 Maurits W. Haverkort 2018/05/12 22:50 Maurits W. Haverkort 2018/05/12 22:49 Maurits W. Haverkort 2016/10/10 09:41 external edit2016/10/09 22:03 Maurits W. Haverkort created Line 4: Line 4: //​CreateFluorescenceYield($O_1$,​$O_2$,​$O_3$,​$\psi$)//​ calculates ​ //​CreateFluorescenceYield($O_1$,​$O_2$,​$O_3$,​$\psi$)//​ calculates ​ \begin{equation} \begin{equation} - \frac{ ​\langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle, + \langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle, \end{equation} \end{equation} with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are: with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are:

Workshops

Script versions External programs Privacy

##### Tools 