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ATOMIC MULTIPLET THEORY  

Atomic multiplet theory is the description of the atomic structure with quantum mechanics. The 

main concepts have been discussed in the lectures on optical spectroscopy. Here we repeat the 

basic aspects, which are needed for a general understanding of the concepts. We add spin-orbit 

coupling that is important for x-ray absorption. The starting point is the relativistic Schrödinger (or 

Dirac) equation of a single electron in an atom, HΨ=EΨ. In atoms where more than one electron 

is present there are four terms in the atomic Hamiltonian: The kinetic energy (HK), the interaction 

between the nucleus and the electrons (HN), the electron-electron repulsion (Hee) and the spin-orbit 

coupling of each electron (Hls). The total Hamiltonian is then given by: 
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The kinetic energy and the interaction with the nucleus are the same for all electrons in a given 

atomic configuration. They define the average energy of the configuration (Hav). The electron-

electron repulsion and the spin-orbit coupling define the relative energy of the different terms within 

this configuration. We only use these two interactions to determine the relative energies of the 

possible configurations of the multi/electron states. 

  



 

2 

THE GROUND STATE OF HYDROGEN AND HELIUM 

We start with the hydrogen atom. A convenient way to describe the electronic nature of a state is 

to give its main quantum numbers. The ground state of the hydrogen atom has one electron in the 

1s shell, i.e. 1s1.  

                          

Graphical representation of the spin (left) and orbital moment (right). 

 

This state has a spin S of ½ that can be oriented south (ms=+ ½) or north (ms=- ½)  and an angular 

moment L of 0. The term symbol is a shorthand way to describe the quantum numbers of a state, 

where they are given as 2S+1L. The term symbol of the ground state of a hydrogen atom is 2S.  

The ground state of the helium atom has two electrons in the 1s shell, i.e. 1s2. This state has a spin 

moment S of 0 as the two spins cancel each other. The angular moment L is also 0. The term 

symbol of the ground state of a hydrogen atom is 1S. The first excited state of helium contains an 

electron in the 1s orbital and a second electron in the 2s orbitals. This present a classic case of a 

2-electron state.  Each orbital contains an electron that can be either spin up or spin down, creating 

four different combinations of the two spins, respectively |½>|½>, |½>|-½>, |-½>|½> and |-½>|-½>. 

The additions of the two electrons yields three two-electron states with total spin momentum S= 1, 

respectively |1,1> = |½>|½>, |1,0> =1/√2( |½>|-½> + |-½>|½>) and |1,-1> = |-½>|-½>. IN addition 

there is one state with total spin momentum S=0, i.e. |0,0> =1/√2( |½>|-½> - |-½>|½>). The two-

electron states are indicated as |1,1>, which means that its S quantum number is 1 and its MS 

quantum number is also 1, etc. 

 

 

 

 

 

 

 

 

Singlet and triplet states of the 1s2s configuration of the excited state of helium. 
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QUANTUM NUMBERS AND TERM SYMBOLS 

The overview of quantum numbers of a single electron and two electrons in an atom, as well as 

their nomenclature, is given in the table. The principal quantum number N is not important for the 

angular symmetry of a state. For a single electron, the quantum numbers are indicated with the 

orbital angular momentum L, the spin angular momentum S of ½, total angular momentum J, with 

two values L+1/2 and L-1/2, the magnetic quantum number ML, spin magnetic quantum number 

MS, and the total magnetic quantum number MJ. 

name symbol 
Values 

(single electron) 
Values 

(two electrons) 

Azimuthal Quantum Number  
Orbital  Angular Momentum 

L 
L(min)= 0 

L(max)=N-1 
L(min)= |L1-L2| 
L(max)=L1+L2 

Magnetic Quantum Number ML  
ML(min)=-L 
ML(max)=L 

ML(min)=-L 
ML(max)=L 

Spin Quantum Number S  S=½ S(min)= 0 
S(max)=1 

Spin Magnetic 
Quantum Number 

MS  
MS(min)=-S 
MS(max)=S 

MS(min)=-S 
MS(max)=S 

Total Angular Momentum  
Quantum Number 

J J(min)=L-S 
J(max)=L+S 

J(min)=L-S 
J(max)=L+S 

Total Magnetic 
Quantum Number 

MJ  
MJ(min)=-J 
MJ(max)=J 

 

MJ(min)=-J 
MJ(max)=J 

 
Overview of the quantum numbers and their nomenclature. The steps in between the minimum and 

maximum values is 1.0 in all cases. 

For a 2-electron configuration the maximum orbital angular momentum L is equal to the addition of 

the two individual orbital angular momenta, L1 and L2. The same rule applies to the spin angular 

momentum, implying that the spin angular momentum of two electrons can be either 1 or 0, and 

the total angular momentum J takes the values from |L-S| to L+S by the step 1. For multi-electron 

configurations with quantum numbers L, S, and J, in general, a term symbol is written as 2S+1LJ, 

where the orbital angular momentum L is indicated with their familiar notation: S for L=0, P for L=1, 

etc. In the absence of spin-orbit coupling, all terms with the same L and S have the same energy, 

giving an energy level that is (2L+1)(2S+1)-fold degenerate. When spin-orbit coupling is important, 

the terms are split in energy according to their J-value with a degeneracy of 2J+1.  The quantity 

2S+1 is called the spin multiplicity of the term, and the terms are called singlet, doublet, triplet, 

quartet, etc. according to S = 0, 1/2, 1, 3/2, etc. A single s electron has an orbital angular momentum 

l=0, a spin angular momentum S=1/2 and a total angular momentum j=1/2. There is only one term 

symbol 2S1/2. For one p electron, L=1, S=1/2, and J can be 1/2 or 3/2, corresponding to term 

symbols 2P1/2 and 2P3/2. Similarly a single d electron has term symbols 2D3/2 and 2D5/2 and a single 

f-electron 2F5/2 and 2F7/2. The degeneracy of these states is given by 2J+1. The general rules for 

adding two electrons are given by the addition of momenta. 
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ADDITION OF MOMENTA 

It is often required to add the momenta from two sources together to get states of definite total 

momentum. As an example, assume we are adding the orbital angular momentum from two 

electrons, L1 and L2 to get a total angular momentum J.. We will show that the total angular 

momentum quantum number takes on every value in the range  

 

We can understand this qualitatively in the vector model pictured below. We are adding two 

quantum vectors. 

 

Graphical representation of vector addition: l1 + l2 

This addition is exactly the same for all momenta S, L and J, for example: 

• Add the orbital angular momentum to the spin angular momentum for an electron in an atom as 

J=L+S;  

• Add the orbital angular momenta together for two electrons in an atom L=L1+L2;  

• Add the spins of two particles together  S=S1+S2;  

• Add the total angular momenta of two electrons together J=J1+J2  

Essentially this rule governs all addition of momenta: Adding L1=3 with L2=2 yields as maximum 

Lmax =L1+L2=5 and as minimum Lmin = |L1-L2| = 1, with all possible values of L differing by an integer 

in-between. L can be 1, 2, 3, 4 or 5. It can always be checked if all values of L are found by adding 

the degeneracies of each state. The degeneracy of each moment is given as 2L+1. The 

degeneracy of L1=3 is 7 and the degeneracy of L2=2 is equal to 5. In total there are 7 times 5 is 35 

possibilities. Adding the degeneracies of the final moments L yields ∑(2L+1) = 3+5+7+9+11 = 35. 

It is always useful to check the completeness of the result by calculating the total degeneracies. 

Exactly the same rules apply for adding S1 + S2, or L1 + S1 to yield the total moment J.  

 

 

 

 



 

5 

SPIN-ORBIT COUPLING 

The consequences of spin-orbit coupling have been described above, but the physical origin of 

spin-orbit coupling has not been treated yet. Spin-orbit coupling is a consequence of the 

inclusion of relativistic effects and it follows directly from the Dirac equation that can be 

considered as the relativistic Schrödinger equation. Classically one can make the following 

reasoning (that is not exactly correct, but it gives a good idea). Consider a hydrogen atom with 

the electron that orbits around the nucleus. Then one can also look at it as a proton orbiting the 

electron, i.e. the electron feels the electrostatic field of the proton but it also feels an effective 

current. This current produces a magnetic field that interacts with the magnetic moment of the 

electron. The spin-orbit coupling is graphically indicated in the figure below. The orbital moment 

of the electron (l) can be parallel or anti-parallel to the spin moment of the electron (s), yielding 

l+s respectively l-s. 

 

Graphical representation of spin-orbit coupling 

COUPLING SCHEMES WITH ONE ELECTRON PER SHELL 

Coupling schemes of states that have only one electron of one hole per shell can be calculated by 

applying the vector addition rules as described above. For example in case of a 1s2s configuration 

there will be 2x2 is 4 combinations. The term symbols can be determined directly from multiplying 

the individual term symbols.  Multiplication of terms A and B is written as AB. For 2S2S, this 

gives L = 0 and S = 0 or 1. This gives the term symbols 1S and 3S. The respective degeneracies 

are 1 and 3, adding up to 4. Because there is no orbital moment (L=0) one does not have to 

consider spin-orbit coupling.  

The term symbols of a 2p3p configuration will have 6x6 is 36 combinations. 2P2P gives L = 0, 1, 

2 and S = 0 or 1. This gives the term symbols 1S, 1P, 1D and 3S, 3P and 3D. The respective 

degeneracies are 1, 3, 5 and 3, 9, 15 adding up to 36. Adding the J-values, one finds for the singlet 

states just a single J, i.e. 1S0, 1P1, 1D2. The triplet states each form three J-term symbols 3P2 plus 
3P1 plus 3P0 and 

3D3 plus 3D2 plus 3D1. The 3S state has L=0, hence also only one J state as 3S1. 

We find two term symbols with J=0 (1S0 and 3P0), four with J=1, three with J=2 and one with J=3.  
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COUPLING SCHEMES WITH MORE THAN ONE ELECTRON PER SHELL 

 

In case of a 2p2 configuration, the first electron has six quantum states available, the second 

electron only five. This is due to the Pauli Exclusion Principle that forbids two electrons to have 

the same quantum numbers np, ml and ms. Because the sequence of the two electrons is not 

important, one divides the number of combinations by two and obtains fifteen possible 

combinations.  A 2p electron has quantum numbers L=1 and S=1/2. This gives the six individual 

combinations with ML=+1, 0 or -1 and MS=+1/2 or –1/2. We will use a shorthand notation and write 

1,+> to indicate the quantum numbers. One can create a 2-electron state by adding two of these 

MLa, MSa> combinations, for example 1,+> + 1,->. This yields a two-electron state with ML, 

MS> quantum numbers equal to 2,0>. The fifteen combinations of adding two 2p electrons are 

indicated. 

mla, msa> mlb, msb> ML, MS> # mla, msa> mlb, msb> ML, MS> # 

1,+> 1,−> 2, 0> 1 1, −> -1, −> 0, -1> 1 

1,+> 0,+> 1, 1> 1 0, +> 0, −> 0, 0> 3 

1,+> 0,−> 1, 0> 1 0, +> -1, +> -1, 1> 1 

1,+> -1,+> 0, 1> 1 0, +> -1, −> -1, 0> 1 

1,+> -1,−> 0, 0> 1 0, −> -1, +> -1, 0> 2 

1,−> 0,+> 1, 0> 2 0, −> -1, −> -1, -1> 1 

1,−> 0,−> 1, -1> 1 -1, +> -1, −> -2, 0> 1 

1,−> -1,+> 0, 0> 2     

The 15 combinations of one-electron states mla, msa> and mlb, msb> of a 2p2 configuration. The 

fourth column counts the degeneracy of the total symmetryML, MS> states 
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These fifteen ML, MS> states can be put into a table collecting their overall ML and MS quantum 

numbers. This yields the following result:  

 

2p2 MS

=1 

MS=0 MS=

-1 

 MS=1 MS=0 MS=-1 

ML=2 0 1 0   1D  

ML=1 1 2 1  3P 1D 3P 3P 

ML=0 1 3 1  3P 1D 3P 1S 3P 

ML=-1 1 2 1  3P 1D 3P 3P 

ML=-2 0 1 0   1D  

(Left) The number of states with a ML, MS> combination; (Right) All the possible term symbols of 

a 3p2 configuration. 

It can be seen that there are three states with ML, MS> = 0,0>, two states ML, MS> = 1,0> and 

-1,0> and a number of other states. If one works out the symmetry properties of these states, one 

will find a number of so-called irreducible representations, or irrep. An irrep defines a single 

configuration with a defined L and S value. The energies of all the ML, MS> states within an L, 

S> irrep is the same.  The rules on quantum numbers as outlined above apply also for irreps. This 

gives a lead to derive the irreps directly from the number of ML, MS> states as given in the table. 

The presence of a |2,0> implies that this state is part of an irrep with L equal to, at least, 2. An irrep 

with L=2 has five states with ML values between –2 and +2. The only associated MS value is MS=0, 

which implies that there is an irrep with L, S> = 2,0>, which is a 1D term symbol.  

One can remove these five states from the table and then one is left with ten states, containing ML 

= 1 and MS = 1. The next term symbol one finds has L, S> = 1,1>, which is a 3P term symbol. 

A 3P term symbol has nine states and one is left with one additional state with MS = ML = 0. This 

state belongs to an L, S> = 0,0> term symbol, or 1S. We have found that the 2p2 configuration 

contains the terms 3P, 1D and 1S , with respective degeneracies of 3x3=9, 1x5=5 and 1x1=1.  It 

can be checked that total degeneracy adds up to fifteen. Including J in the discussion we have the 

values 1D2 , 1S0 and 3P2 plus 3P1 plus 3P0. Focusing on the J-values, we have two J=0, one J=1 

and two J=2 values. Because X-ray absorption calculations are carried out in intermediate coupling, 

the J –value is important; the total calculation is split into its various J-values. 
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Conf. J Term Symbols Deg. (2J+1) 

1s0 0 1S0 1 1 

1s1 1/2 2S1/2 1 2 

1s12s1 0 

1 

1S0 

3S1 

1 

1 
4 

2p1 

=2p5 

½ 

3/2 

2P1/2 

2P3/2 

1 

1 
6 

2p2 

=2p4 

0 

1 

2 

1S0 3P0 

3P1 
1D2 

3P2 

2 

1 

2 

15 

2p3 

 

½ 

3/2 

5/2 

2P1/2 

4S3/2 2P3/2 2D3/2 

2D5/2 

1 

3 

1 

20 

2p13p1 0 

1 

2 

3 

1S0 3P0 

1P1 3S1 3P1 3D1 
1D2 

3P2 3D2 

3D3 

2 

4 

3 

1 

36 

Configurations of s and p electrons. The term symbols are sorted for their J value. The third column 

gives the number of term symbols per J-value. The last column gives the overall degeneracy of the 

configuration. 
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TERM SYMBOLS OF D-ELECTRONS 

The LS term symbols for a 3d14d1 configuration can be found similarly by multiplying the term 

symbols for the configurations 3d1 and 4d1. For 2D2D, this gives L = 0, 1, 2, 3 or 4 and S = 0 or 1. 

The ten LS term symbols of the 3d14d1 configuration are 1S, 1P, 1D, 1F, 1G plus 3S, 3P, 3D, 3F, 3G. 

The total degeneracy of the 3d14d1 configuration is 100. In the presence of spin-orbit coupling, a 

total of eighteen term symbols is found. Due to the Pauli exclusion principle, a 3d2 configuration 

does not have the same degeneracy as the 3d14d1 configuration. In total there are 109/2 = 45 

possible states. Following the same procedure as for the 2p2 configuration, one can write out all 45 

combinations of a 3d2 configuration and sort them by their ML and MS quantum numbers. Analysis 

of the combinations of the allowed ML and MS quantum numbers yields the term symbols 1G, 3F, 
1D, 3P and 1S. This is a sub-set of the term symbols of a 3d14d1 configuration. The term symbols 

can be divided into their J-quantum numbers as 3F2, 3F3, 3F4, 3P0, 3P1, 3P2, 1G4, 1D2 and 1S0.In case 

of a 3d3 configuration a similar approach shows that the possible spin-states are doublet and 

quartet. By adding the degeneracies, it can be checked that a 3d3 configuration has 120 different 

states, i.e. 109/28/3. The general formula to determine the degeneracy of a 3dn configuration is: 
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 MS=1 MS=0 MS=-1 1 MS=0 -1 

ML=4 0 1 0  1G  

ML=3 1 2 1 3F 1G 3F 3F 

ML=2 1 3 1 3F 1G 3F 1D 3F 

ML=1 2 4 2 3F 3P 1G 3F 1D 3P 3F 3P 

ML=0 2 5 2 3F 3P 1G 3F 1D 3P 1S 3F 3P 

ML=-1 2 4 2 3F 3P 1G 3F 1D 3P 3F 3P 

ML=-2 1 3 1 3F 1G 3F 1D 3F 

ML=-3 1 2 1 3F 1G 3F 3F 

ML=-4 0 1 0  1G  

(Left) The number of states with a ML, MS> combination; (Right) All the possible term symbols of 

a 3d2 configuration. 

Important for the 2p X-ray absorption edge are the configurations of the 2p53dn final states. The 

term symbols of the 2p53dn states are found by multiplying the configurations of 3dn with a 2P term 

symbol. For example 2P times 3P yields 2S + 2P + 2D + 4S + 4P + 4D. The tables with J-value 

degeneracies are also important for crystal field effects. The total degeneracy of a 2p53dn state is 

given as: 
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For example, a 2p53d5 configuration has 1512 possible states. Analysis shows that these 1512 

states are divided into 205 term symbols, implying in principle 205 possible final states. If all these 

final states have finite intensity then depends on the selection rules.  
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THE MATRIX ELEMENTS 

 

Above we have found the number and symmetry of the states of a certain 3dn configuration. The 

next task is to calculate the matrix elements of these states with the Hamiltonian HATOM. As 

discussed above, HATOM includes the electron-electron interaction Hee and the spin-orbit coupling 

HLS : 
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We first discuss the matrix elements of the electron-electron interaction. Because this Hamiltonian 

commutes with L2, S2, Lz and Sz, the off-diagonal elements all are zero. A simple example is a 1s2s 

configuration consisting of 1S and 3S terms. The respective energies can be shown to be: 
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Note that the triplet state is threefold degenerate and the average energy of the 1s2s configuration 

equals F0(1s2s) - 1/2 G0(1s2s). F0 and G0 are the Slater-Condon parameters (or Slater parameters) 

for respectively the direct Coulomb repulsion and the Coulomb exchange interaction. The main 

result can be stated as 'the singlet and the triplet state are split by the exchange interaction'. This 

energy difference is 2G0(1s2s). An analogous result is found for a 1s2p state for which the singlet 

and triplet states are split by 2/3G0(1s2p). The pre-factor is determined by the degeneracy of the 

2p -state. The general formulation of the matrix elements of two-electron wave functions can be 

written as: 

 +=++

k

k

k

k

k

kJ

S

r
e

J

S GgFfLL 1212 ||
12

2

 

To obtain this result the radial parts Fk and Gk have been separated using the Wigner-Eckhart 

theorem and Hamiltonian 1/r12 has been expanded. For equivalent electrons gk is not present and 

the maximum value of k equals l1+l2.   
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THE ENERGY LEVELS OF TWO D ELECTRONS 

 

The energies of the representations of the 3d2 configuration are found from the calculation of f2 and 

f4 for the five term symbols 1S, 3P, 1D, 3F and 1G. To a very good degree of approximation, the 

Slater-Condon parameters F2 and F4 have a constant ratio: F4 = 0.62 F2. The approximate energies 

of the five term symbols are listed below. In case of the 3d transition metal ions, F2 is approximately 

equal to 10 eV. This gives for the five term symbols the energies respectively as: 3F at -1.8 eV, 1D 

at -0.1 eV, 3P at+0.2 eV, 1G at +0.8 eV and 1S at +4.6 eV. The 3F-term symbol has lowest energy 

and is the ground state of a 3d2 system. This is in agreement with the Hund's rules, which will be 

discussed in the next section. The three states 1D, 3P and 1G are close in energy some1.7 to 2.5 

eV above the ground state. The 1S state has a very high energy of 6.3 eV above the ground state, 

the reason being that two electrons in the same orbit strongly repel each other. 

 

 f2 f4 Energy 

1S  2/7  2/7 0.46F2 

3P  3/21  -4/21 0.02F2 

1D  -3/49  4/49 -0.01F2 

3F  -8/49  -1/49 -0.18F2 

1G  4/49  1/441 0.08F2 

The energies of the five term symbols of a 3d2 configuration. The energy in the last column is 

calculated using the fact that the radial integrals F2 and F4 are a constant ratio of 0.62.  

 

MORE THAN TWO ELECTRONS 

 

For three or more electrons the situation is considerably more complex. It is not straightforward to 

write down an anti-symmetrized three-electron wave function. It can be shown that the three-

electron wave function can be built from two-electron wave functions with the use of the so-called 

coefficients of fractional parentage. More details can be found in books an atomic physics.  
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HUND’S RULES 

We now discuss the ground state symmetries of the transition metal compounds, which are 

characterized with a partly filled 3d band. The term symbols with the lowest energy are found after 

calculating the matrix elements, following the rules as described above. The finding of the 3F state 

as the ground state of a 3d2 configuration is an example of the so-called Hund's rules. On the basis 

of experimental information Hund did formulate three rules to determine the ground state of a 3dn 

configuration. For 3dn configurations though, the rules are correct, as is also confirmed by the 

atomic multiplet calculations. The three Hund rules are: 

1. Term symbol with maximum S  

2. Term symbol with maximum L 

3. Term symbol with maximum J (if the shell is more than half full) 

The energy of a configuration is lowest if the electrons are as far apart as possible. The first Hund's 

rule 'maximum spin' can be understood from the Pauli principle: Electrons with parallel spins must 

be in different orbitals, which on overall imply larger separations, hence lower energies. This is for 

example evident for a 3d5 configuration, where the 6S state has its five electrons divided over the 

five spin-up orbitals, which minimizes their repulsion. In case of 3d2, the first Hund's rule implies 

that either the 3P or the 3F-term symbol must have lowest energy. The second Hund’s rule states 

that the 3F term symbol is lower than the 3P term symbol. Again the reason is that the 3F wave 

function tends to minimize electron repulsion. In a 3F configuration, the electrons are orbiting in the 

same direction. That implies that they can stay a larger distance apart on the average since they 

could always be on the opposite side of the nucleus. For a 3F configuration, some electrons must 

orbit in the opposite direction and therefore pass close to each other once per orbit, leading to a 

smaller average separation of electrons and therefore a higher energy. The third rule implies that 

the ground state of a 3d8 configuration is 3F4, while it is 3F2 in case of a 3d2 configuration. 
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HUNDS RULE GROUND STATES OF TRANSITION METAL & RARE EARTH IONS 

 

There is a simple procedure to determine the Hund’s rule ground state of every atom by making a 

table that includes the ML and MS values for a 3d or 4f electron. Assume that we would like to 

determine the ground state of a 3d2 system. Then we can fill the two |ML,MS> states from the top 

left, in this case |2,> and |1,>, where  indicates a MS value of +1/2. Adding the values together 

yields the total L and S value of the 3d2 system, i.e. L = 3 and S=1 or a 3F ground state. Adding 

the third Hunds rule gives the J-value of the ground state. Because the shell is less than half-full, 

the minimum J-value is the ground state, i.e. 3F2. Similarly a 3d3 system has a 4F3/2 ground state, 

etc. 

 
Determination of the Hunds rule ground state for a 3d2 configuration. Add the first electron (blue) 

into the microstate with spin-up state with the highest ml value, i.e ml=2 and ms= ½ . Add the 

second electron into the microstate with ml=1 and ms= ½ . Adding the ml values yields the L value 

of the Hunds rule ground state. Adding the ms values yields the S value of the Hunds rule ground 

state. This gives L=3 and S=1, i.e. the 3F ground state. 

 

The same procedure can be used for 4f and 5f systems. A 3f4 system has S=2 from the four spin-

up electrons and L =3+2+1+0=6. This yields a 5I4 ground state, etc. Note that atomic term symbols 

count up to 6, including G-states for J=4, H-states for J=5 and I-states for J=6.  

  



 

15 

 

EXERCISES (SELF TEST) 

 

Question 1 

The K edge of oxygen atoms can be described with atomic multiplets.  

a. What is the term symbol of the ground state?  

b. Determine all term symbols, including their J values, for a 1s1 2p5 configuration  

c. How many peaks are visible in the 2p4→1s1 2p5 transition from the ground state?  

Assume that the experiments are performed at a temperature where all spin-orbit split states of 

the lowest LS term symbol are partly occupied. 

d. How many peaks are now visible in the spectrum? Explain.  

 

Question 2  

A Ni2+ ion has a 3d8 ground state. Its LS-term symbols are respectively 1S, 3P, 1D, 3F and 1G.  

a) What is the total degeneracy for a 3d8 configuration? 

b) What is the ground state, including its J quantum number?  

c) In 3p x-ray absorption, a 3p electron is excited to the 3d band. Determine the LSJ term 

symbols of the 3p5 3d9 configuration.  

d) What is the total degeneracy for a 3p5 3d9 configuration?  

e) How many peaks are visible in the 3p XAS spectral shape? Explain.  

f) How many peaks are visible if the calculation is repeated with the 3d spin-orbit coupling 

set to zero.  

 

Question 3 

a) What is the ground state of a dysprosium atom, which contain nine occupied 4f electrons? 

Explain. 

b) What is the atomic ground state of Thulium (4f12)? Explain.  

 

 

 


