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1 Intro

Wannier functions can be defined in many ways since there is a gauge freedom of chosing a phase transformation.
The ideal way of fixing the gauge is the requirement of maximum localization. This is a tedious algorithm and
we do not do this in FPLO. However, it turns out that our definition leads to highly localized Wannier functions
(WFs). Should the Wannier functions turn out not to be localized, it in most cases means that the WF is badly
chosen. The main drawback of our approach is, that the user has to decide, where the WFs shall sit and which
symmetry they shall have. However, this is at the same time intended, since for modeling it is exactly what one
wants to do.

The WF sitting in cell R and being of type µ (which denotes the WF center and its symmetry) is defined as

WRµ =

ˆ

e−ikR
∑

n

Ψk
nU

k
nµ (1)

where Ψ denotes the Kohns-Sham (KS) functions and U is a unitary matrix. If we define less WFs than KS
functions U is a column unitary projector (U+U = 1, UU+ = P ). It mapps all the KS bands on some few
WFs. The choice of U is the choice of the gauge. In FPLO we use a chemically motivated local orbital basis Φ
to construct

Ψk
n =

1√
N

∑

Rsν

ΦRsνe
ik(R+s)Ck

sν,n

(s is the atom position and ν some quantum numbers specifying the orbital). These orbitals although non-
orthogonal are in a way ’optimally’ localized by their construction. Hence, it is clear that a WF centered at an
atom and having a certain orbital symmetry has the corresponding orbital as its main contribution. This allows
the following choice of U . We project the KS functions on a test function χ, which is an FPLO orbital in the
simplest case. The resulting number is the square root of the orbital character of the KS bands, as plotted in
the FAT bands. If we now select only the KS functions whith a large such orbital character in Eq. (1), we will
end up with a WF resembling χ the most and this is where the localization of our WFs comes from. If we want
WFs corresponding to sub bands of a band complex with a character χ we have to project onto a particular
energy window as well. This happens if there are bonding (B) and antibonding (AB) bands of character χ
and if one wants, say, only WFs of the AB bands. So, in total we define a test function or WF projector χ
and an energy window for each WF. The WF projector χ can in principle be a linear combination of FPLO
orbitals. Example: suppose we have a cuprate plane. The bands are formed of linear combinations of Cu 3d
and ligand O-2p orbitals. Around certain k-points the upper bands are clearly AB and hence correspond to
a certain molecular orbital with a certain phase relation between the central 3d orbital and the O-2p orbitals.
The lower (B) bands are clearly formed of the same orbitals, but with a different phase relation. If this is
the case then defining WF-projectors using the AB molecular orbital as χ will automatically project out the
antibonding bands, given that the band topology is dominated by the clear character separation around the
considered k-point. This would make the energy window obsolete.

The Wannier transformation can be described in two steps. In the first step the unitary projector is build from
the users definitions of χ and the energy windows. U is applied to the KS functions yielding the Bloch sums of
the WFs

W k
µ (r) =

∑

n

Ψk
n (r)U

k
nµ (2)

=
1√
N

∑

R

eikRWRµ (r)
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WRµ (r) =

ˆ

e−ikRW k
µ (r) dk (3)

(Note, that the k-integrations contain appropriate normalization factors, left out in the formulas or being hidden
in the integral measure.) The orbtial Bloch functions are

Φk
sµ =

1√
N

∑

R

ΦRsµe
ik(R+s)

where the additional phase factor eiks makes live easier by removing the dependence on the coordinate origin.
From the formulas we get the representation of the Hamiltonian in orbital Bloch sums

Hk
s′s =

〈

Φk
s′ĤΦk

s

〉

=
1

N

∑

R′R

〈

ΦĤΦ
〉

R′s′Rs
eik(R+s−R′−s′)

=
∑

R

〈

ΦĤΦ
〉

0s′,Rs
eik(R+s−s′)

from which we get the KS eigenvalues

εkn =
(

Ck+HkCk
)

n
(4)

This gives the WF Bloch representation

〈

W q
µ′ĤW k

µ

〉

=
∑

n

U q∗
nµ′ε

k
nU

k
nµδqk (5)

=
1

N

∑

RP

〈

WPµ′ĤWRµ

〉

eik(R−P )δqk

=
∑

R

〈

W0µ′ĤWRµ

〉

eikRδqk

with

ε0µ′,Rµ =
〈

W0µ′ĤWRµ

〉

(6)

=

ˆ

e−ikR
〈

W k
µ′ĤW k

µ

〉

dk

which is the WF Hamiltonian in real space representation, which usualy contains the model we are interested
in. Its k-representation (Bloch sums) Eq. (5) can be diagonalized and will give the bandstructure corresponding
to the model. If the WFs represent the whole Hilbert space spanned by all Ψk

n of course the resulting WF-
bandstructure coincides with the original bandstructure Eq. (4). There is a modification one can do, which
consists of restricting the matrix elements Eq. (6) by removing hoppings with distances above a certain cut off
or hoppings, which are smaller than a certain threshold. The resulting restricted hopping matrix can be Bloch
summed and diagonalized again. Note, however, that this modified Hamiltonian does not strictly correspond
to the WFs calculated above.

The whole transformation can be summed up, by defining a transformation from the FPLO basis into the WF
basis

WRµ (r) = W0µ (r −R)

W0µ (r) =
∑

R′sν

ΦR′sνDR′sν,µ (7)

2 The FPLO WF module

The Wannier function module in FPLO is currently a postprocessing tool. First, one needs a converged cal-
culation. Then, the relevant information must be written to the hard disk in order to access it conveniently
later. This might take plenty of disk space! (See Sec. 2.5) This information is then read and used in a sub-
sequent FPLO run to calculate the desired Wannier functions. In order to use the module a particular file
(=.wandef) must be created by the user. If this file is found by a running FPLO process the Wannier module
is activated, if the keyword doit is found on a single line in the file. To disable the module change the keyword
into something like e.g. xdoit. If FPLO finds the file =.wandef with the keyword it will start dumping data
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after every Kohn-Sham diagonalization process. If the FPLO process comes to convergence (best to start with a
converged calculation to begin with) it stops like in normal mode. The file created after the initial data-dumping
is +wancoeff (besides all the usual files). Note: that the band structure plot in the fedit submenu should be
switched on.

On restart of FPLO (provided that =.wandef exist and the doit-keyword is set therein) all the data are used
and the actual WF-module is executed. It reads WF definitions from =.wandef and constructs WFs accordingly.
The WFs can be produced in real space for visualization and the WF Hamiltonian in Bloch representation Eq.
(5) can be written to the file +hamongrid on a k-space grid. The WF hopping itegrals Eq. (6) are produced
in the output and can be used to extract models. Beware that the WF hamiltonian on the k-space grid is
restricted by cutting of the real-space Hamiltonian Eq. (6) according to user input.

We will walk through an example step by step. The input-files are in the example directory. The example is
CaCuO2 in a ferro-magnetic calculation (just to have that complication in). We want to create a WF for the
antibonding 3dx2−y2 band. In Figure 1 we show the spin-polarized
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Figure 1: FPLO fat-bands CaCuO2

fat-bands as given by FPLO. The filled symbols denote the 3d majority fat-bands and the open symbols the 3d
minority bands. The 3dx2−y2 bands are called 3d+ 2 according to the standard convention and orientation of
the global coordinate system and have magenta color. Focus on the majority bands (filled symbols) , you see a
bonding and antibonding band (best seen at the M-point). We are interested in a description of the antibonding
band. There is only one Cu atom in the unit cell and acoording to the list of sites in the output that is site
number 2. We now guess that the Cu, site 2, 3dx2−y2 orbital will have the largest contribution to a WF
describing the anti-bonding part of the filled magenta band(s). Thus, we chose this orbital as a WF-projector
χ. We assume that the file =.wandef exists and that the keyword doit is set and that the file +wancoeff got
already created.

We have to define, which linear combinations of local orbitals are used as WF-projectors. Note, that we have
two basic choices: the WF-projector and the energy window. In our case of CaCuO2 we already identified the
projector. The simplest projector consists of one single orbital centered at on site. A WF-projector is defined
using the keyword wandef. A wandef can have many contributions contrib, each denoting an FPLO orbital
with a certain weight factor. Here comes the example

. . .
——– Cu ————–
wandef
on
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name Cu x2-y2
emin -4 -1
emax -1 3
de 1 1
contrib

site 2
difvec 0 0 0
xaxis 1 0 0
zaxis 0 0 1
orb 3d+2
fac 1

As can be seen there can be arbitrary lines in the file, and they are considered comments as long as they do
not start with a keyword. In our case ’——— Cu —————-’ is such a comment. Then comes the keyword
wandef starting of a WF-projector. The next thing is on or off. This allows to have several wandefs in one
file, where only some are used (playing around). The wandef has a name, which can be anything after the
keyword name (actually it should not be more than 17 characters). The energy window is discussed later. in
our example the wandef is made of one contrib. The contrib is an orbital sitting at site 2, being difvec 0
0 0 away from the (imagined) centerpoint of the WF, which in this case is the position of site 2. The orbital is
defined with respect to the local coordinate system, whose xaxis is 1 0 0 and zaxis is 0 0 1. In this local system
the orb is 3d+2 and the contrib enters the whole wandef with relative weight fac 1. If there are more than
one contribs the fac of each contrib can be given. The whole thing is normalized later on. If the wandef
is made of several contribs at different sites it is important to correctly define the difference vectors difvec.
Choose a particular point in space as WF center and express the sites of the contribs by vectors pointing from
the WF center to the sites . . . these are the difvecs.

If there is more than one site belonging to a crystalographic orbital (all sites generated by the same Wyckoff
position), the user has to give every WF-projector separately in the moment. In this case it is important that
the user takes care that all the different WF-projectors belonging to the cryst. orbit are symmetry related.
This means setting up proper difvec, x/zaxis, orb, fac and so on values.

In our example the orbital used asWF-projector forms a bonding and an anti-bonding part. There is only one Cu
3dx2−y2 orbital in the simple unit cell and hence it can only form one band. However, this orbital forms sigma-
bonding hybrids with the plaquette oxygen 2p-orbitals and this allows for and creates “two” bands. Moreover,
it is clear from Figure 1 that the anti-bonding (AB) band is not clearly isolated due to other hybridizations.
Hence, a well defined Wannier function cannot exist. In order to have some approximation for modeling we
create a single WF of AB type. According to the rules of how WFs are created it is clear that we need to
project away the part of the KS spectrum, which contains the bonding part of the corresponding band. This
is done by specifying an energy window. All bands outside this window will be ignored. For the majority
bands we have the AB band between -5 and 0 eV and the B band between -8 and -5 eV. For the minority
band it is shifted upwards accordingly. The energy window could be defined as a sharp cutoff. This can lead
to weird effects, if the band character specified through the WF-projector occurs ONLY outside this window
for a particular k-point (such things can actually happen). This would mean that for one k-point the weight
of the WF-projector in the considered Hilbert-subspace is zero and this leads to an indefinite problem, when
calculating the WFs. So, it is better to make the window smooth in order to have the interesting subspace in
the main energy window but allowing to sample outside of it, in case we have a character-run-away scenario.
The energy window is defined by a function being 1 between emin and emax and falling of as a gaussian, with
a width de outside this window. Of course, the energy window applies to all contribs of one wandef. In spin
polarized cases these three keywords take two values one for the majority and one for the minority bands. The
user should also pay attention that the energy window is the same for all wandefs belonging to the same cryst.
orbit!

Suppose that we defined the above described WF projector onto one orbital, defining one WF per unit cell
and that we did not specify the energy window. This would lead to a WF whose corresponding band will be
pretty dispersionless situated at an energy between the B and AB bands in the original band structure. This
happens because the projector χ makes one single band out of the B and AB part of the KS-Hilbert space,
which essentially forms two bands. In mathematical terms this will lead to an average of the B and AB KS
wavefunctions, which will have non-bonding character. That should also make clear what happens, if we extend
the energy window more and more towards the B energies. This will mix in more and more of the bonding KS
functions, which leads to a WF band whose energies get pulled down more and more. The user can try to play
with this to get a feeling.

Now, we have defined all the stuff in the file =.wandef and we can run FPLO.
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1. The first thing in the WF module will be that the content of =.wandef is copied to the output, followed
by a more condensed printout of the wannier parameters. The later output shows all parameters, also the
ones not explicitely set in =.wandef (which then will have their default values). Then follows a section,
in which the symmetry of the WF-projectors χ is checked. If this check does not run through properly
there is a mistake in the symmetry relation between wandefs of χ-s belonging to the same cryst. orbit.
Check all keywords. In the moment the energy window is not checked for proper symmetry setting. So,
if the code runs through, but the output seems weird, check the energy windows!

2. Now, if the file +wancoeff is found it will be loaded. If not, the normal FPLO execution will continue.
Reading the data is not the fastest that is why there is an internal loop (see below). See also Sec. 2.5.

3. Now, the Wannier bands get processed. As a result the hopping matrix elements between WFs are printed
to the output. This printout is controlled by user defined restrictions to avoid enormous amounts of data.
Example:

spin 1: WF(Cu x2-y2) -> WF(Cu x2-y2) at relative
T= 0.00000 0.00000 0.00000 hop= -2.093458893797475
T= 0.00000 0.00000 6.04712 hop= -0.061341124468540
T= 0.00000 0.00000 -6.04712 hop= -0.061341124468540
T= -7.29434 0.00000 0.00000 hop= -0.463606088774015
T= 0.00000 -7.29434 0.00000 hop= -0.463606088774014
T= 0.00000 7.29434 0.00000 hop= -0.463606088774014
T= 7.29434 0.00000 0.00000 hop= -0.463606088774015

The WFs are given by their name, and the symbol ’->’ means that the vectors, which follow (’T= . . . ’)
point from the WF left of ’->’ to the one right of ’->’. After each vector ’T=’ the hopping element in
eV is printed. If T=0 the hopping element is the onsite matrix element. The information written to the
output is restricted such that only hoppings with |t| >WF ham threshold are considered and only for
|T | ≤ham cutoff.

4. After this the output on the reciprocial grid is performed. Here it is important to realize that the
Hamiltonian in k-space is written, which corresponds to the Bloch sums of the hoppings Eq. (6) after the
cut off of hoppings for which |T | >ham cutoff and |t| <WF ham threshold. The resulting Hamiltonian
is written to +hamongrid. See the wannier.f90 soure code for the order of the data.

5. Now, +WF coefficients is written, which contains information about the contributions of the FPLO or-
bitals to the WFs Eq. (7). This file shows only contributions, which are larger than WF coeff threshold
in =.wandef.

6. At the end of the module the WF are written to disk on a real space grid. There will be data files
opendxWF.dx and wfdata... and control files WF.net|cfg. The later can be use to visualize the data
using opendx:

dx -image WF.net

Beware that some standard installations of opendx are a bit buggy. For instance, it might work better if
num-lock is turned off.

7. After this FPLO pauses with the message

CTRL C for abort, enter for next trial

Here, one can type CTRL-C to stop, or one modifies the wandefs (in another window/editor) and hits
enter to re-run the module, with re-scanning =.wandef but without re-reading +wancoeff (which is a slow
read, since large file).
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Figure 2: Wannier fit for CaCuO2

Figure 2 shows the result of the CaCuO3 example. Dark yellow and magenta are the 3dx2−y2 fat bands
as produced by FPLO. Red shows the full Wannier function transformation (without cutoffs) from the file
+wanband and green shows the cutoff model WF bands including cutoffs. One can nicely observe how the WF
bands interpolate the hybridization gap between Γ and X. and M and Γ.

2.1 Files

There are three band structure files produced.

+wanband The Bloch-sums of the WF Eq. (2) are obtained by doing the unitary transformation in k-space
(U). The Hamiltonian in WF-Bloch basis in k-space Eq. (5) is directly related to the WF-Bloch sums
and hence is obtained straight from the U -transformed KS functions and Hamiltonian. The resulting k-
dependent Hamiltonian has the dimension of the WF-basis defined by the user. It can be diagonalized to
get the band structure belonging to the WF model. The result of this is written to +wanband. If the WFs
describe an isolated band complex (one needs as many WFs as there are KS bands in the band complex)
then the +wanband band structure must coincide with the bandstructure of this band complex in the full
FPLO band structure plot. Deviations are possible, if there are not enough k-points in the FPLO-SCF
calculation. This comes about since a discrete approximation to the k-integral in Eq. (1) defines WFs,
which have periodic images with a period of the Born von Karman torus.

+wanbweights This are the fat-bands corresponding to +wanband. The band weights are determined with
respect to the WF character in the corresponding bands. Let’s make that clearer. In a local orbital basis
like FPLO the overlap of the orbitals with the KS functions determines the fat-bands or how much of a
certain orbital a band is made of. This concept can be applied to the WFs as well thinking of the WFs
as a basis. So, how much of a particular WF makes up a band? This is given by the information in this
file. Note, that the FPLO fat-bands and WF fat-bands do not coincide. That is the main reason why we
do a WF analysis, see Figure 3
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Figure 3: Comparison of FPLO fat-bands (upper panel) with WF fat-bands (lower panel) for a NiO2-chain.
Some WFs are linear combination of several orbitals, such that the WFs are centered between two orbitals. One
can clearly see that in the WF basis each band has a pure character, i.e. the bands are completely decoupled
by chosing a symmetry adapted basis (WFs).

.

+wanbandtb Now, we can go a step further and Fourier transform the WF-Bloch sums Eq. (2) into real space
Eq. (3). This gives the actual WFs. In real space these WFs overlap and form hopping integrals Eq.
(6). These hopping integrals can be cut off at some distance or if they are smaller than a threshold. This
defines a modified Hamiltonian in real space. We transform this modified (model) Hamiltonain back into
k-space, diagonalize it and get the band structure in this file. If the cut off and threshold is moderate
the result should equal +wanband otherwise it can differ. Especially, for non isolated bands we can get
non-analyticities in +wanband, which are un-avoidable in some cases. It turns out that the real-space
cutoff reduces these unwanted effects.

The band structure data files can be visualized using the bandplot-tools of fplo. Besides these files there are a
few more:

+WFstat... contains the absolute values of the coefficients in Eq. (7) as a function of the distance of the
corresponding orbitals from the Wannier function center. Plot this file (e.g. xfbp ./+WFstat...) to have
an idea of the localization of the WFs.

+T... contains the hoppings from a given WF to the neighbouring WFs corresponding to Eq. (6) as a function
of the distance between the WF centers.
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2.2 Keywords

The keywords in =.wandef are explained in the following.

doit switch the WF module on.

wandef start a definition of a single Wannier function.

on/off make the corresponding wandef active/inactive.

emin the lower bound of the energy window (two numbers if spin-polarized).

emax the upper bound of the energy window (two numbers if spin-polarized).

de the width of the Gaussian tail above and below emax/emin defining a smooth energy window (two
numbers if spin-polarized).

delower/deupper like de, but for the lower/upper end of the energy interval. Note, that de will
overwrites delower/deupper if specified after the latter!

ubands/lbands band indices, which specify the maximum and mimimum band to be contained in the
projector (energy window). (two numbers if spin-polarized)

contrib add an FPLO orbital to the wandef. There can be several contribs in one wandef, one after
the other.

site the site number of the orbital according to FPLO output.

name an arbitrary name to identify the WF.

difvec the distance of the contributing orbital from th WF center. The difvec of the first contrib
to a wandef together with the site of the first wandef implicitly define the WF center. The
choice of the WF centers decide whether the WF is real or not. WF must be defined such that
they are real. E.g. a single orbital/contrib WF should always have difvec 0 0 0.

xaxis the local x-axis expressed in global coordinates

zaxis the local z-axis expressed in global coordinates

orb the orbital (e.g. 2s+0 or 3d-1). In full-relativistic mode the orbitals can either be pseudo
non-relativistic projections denoted by “3d-1 up” or “3d-1 dn” or spherical spinors denoted by
3d3/2-1/2 or 3d5/2+3/2.

fac a weight factor, determining the relative weight of the orbital/contrib in cases of multiple-contrib
wandefs. The weights need not be normalized, this is taken care of.

coefficients format can be bin or something else. Since version 14.00, the file +wancoeff can be converted
into binary format for faster loading. After the first FPLO run with a valid =.wandef present, +wancoeff
will have been created. A rerun will start the WF creation process. If this option is set to bin the data file
will be converted into binary format, if not already done. On any further run the binary file +wancoeffbin
will be read instead of +wancoeff. This is faster. The user has to take care of deleteing +wancoeffbin

whenever +wancoeff got changed due to settings changes by the user.

ham cutoff restricts output of the real-space WF Hamiltonian in standard output and +T.... Also restricts
the matrix elements used in creating +hamongrid.

WF coeff threshold restricts the output of coefficients in +WF coefficients.

WF ham threshold restricts the output of real-space Hamiltonian in standard output and +T... and re-
stricts the hoppings used in creating +wanbandtb and +hamongrid.

WF write coeff stats can be on/off and triggers the output of the files +WFstat...

ham write t stats can be on/off and triggers the output of the files +T...

For the output of the WFs on the real space grid (visualization) we have to define a grid

WF grid basis can be conv/prim. This defines the basis B =







~b1
~b2
~b3






of the box-like grid. We can use the

conventional or the primitive basis vectors.
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WF grid directions in terms of the basis we can define three vectors forming the rows of V = DB. These
three directions span the grid-box. The input here is the matrix D.

WF grid subdivision subdivide the box along the directions V accordingly.

WF grid origin put the origin of the box here. If this keyword is commented out (e.g. xWF grid origin)
the box will be centered around the WF center.

For the output of the WF Hamiltonian on the k-space grid (file +hamongrid) we have to define a grid

k grid basis the basis B in reciproical space. (Note the reciprocial relations between bcc and fcc and the like.)

k grid directions the directions V = DB defined here by giving D.

k grid subdivision subdivisions, see above.

k grid incl periodic points can be on/off. The Hamiltonian in k-space is periodic. We can include or
exclude the periodically equivalent points at the boundary of the box.

2.3 Definition of real spherical harmonics

We define real spherical harmonics Ylm with magnetic qn. numbers m = −l, . . . , l as

Ylm (x, y, z) ∝ P
|m|
l

(z

r

)

{

sin (|m|ϕ) m < 0

cos (|m|ϕ) m ≥ 0

The sin/cos can be expanded according to the addition theorems, e.g. sin (2ϕ) = 2 sinϕ cosϕ. Using sinϕ ∝ y

and cosϕ ∝ x we get sin (2ϕ) ∝ xy. Additionally we need P
|m|
l

(

z
r

)

∝ polynomial of degree l −m in z. Thus,

Y2,−2 ∝ P 2
2

(z

r

)

sin (2ϕ) ∝ xy

Y2,−1 ∝ P 1
2

(z

r

)

sin (ϕ) ∝ zy

Y2,0 ∝ P 0
2

(z

r

)

cos (0ϕ) ∝ z2

Y2,1 ∝ P 1
2

(z

r

)

cos (ϕ) ∝ zx

Y2,2 ∝ P 2
2

(z

r

)

cos (2ϕ) ∝ x2 − y2

For more specific information on the polynomial in z one has to look up the associated Legendre polynomials

P
|m|
l (z).

2.4 Problems

The number of k-points used in the SCF calculation influences the Wannier function quality. If the k-mesh is
not fine enough, the band structure determined by diagonalizing the WF Bloch Hamiltonain Eq. (5) (+wanband)
will not coincide with the corresponding bands of the full FPLO band structure (+band). (Coincidence can of
course only happen anyway, if the WFs describe an isolated band complex.)

If the real space Hamiltonian cutoff is smaller than the extend of the WFs the fitted Wannier bandstructure
(+wanbandtb) will not conincide with the full WF band structure. This may also be due to a bad Wannier
definition, which is not localizing the WFs sufficiently (check energy window, use molecular orbitals (several
contribs per wandef) instead of simple orbitals).

There might be unnatural spikes at certain k-points in the WF band structure. This usually means that the
energy window is to narrow and that the character of χ is only large outside the window at the corresponding
k-points.

If slabs or chains are calculated, there is an artificial periodicity in the irrelevant directions. If not enough
SCF k-points are used in these directions, we get influences of the artificial periodic replica. Hence, either the
vacuum spacing is very large, which is detrimental for other parts of the code, or one has to use sufficiently
many points in the irreevant directions. (Only some experimenting can tell.)
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2.5 Saving memory (and time)

In order to reduce the size of +wancoeff the user can set the FEDIT option “restrict bands to window” in the
bandplot submenu. Then lower and upper energy bounds in the same submenu defines the bands, which will
be written to +wancoeff for all data contained in this file.

Use the coefficients format option in =.wandef in order to convert +wancoeff to binary format.

3 Examples

3.1 Hexagonal: sp
2, Graphene, MgB2

Here we analyse the Wannier function choices for a hexagonal lattice with essentially two atoms per unit cell.
The main issue is to understand the symmetry considerations.

Have a look at the accompanying example directories for MgB2.

g1

g2

M

K

s2

s1

a1

a2

Figure 4: Real and reciprocal cell of graphene, MgB2

Figure 4 shows the basic lattice structure. We have a unit cell given by

A =





a
T
1

a
T
2

a
T
3



 = AE, E =





e
T
x

e
T
y

e
T
z



 , A =





aH 0 0
0 aH 0
0 0 cH









√
3
2 − 1

2 0
0 1 0
0 0 1





and two sites s = sTA, s1 =
(

1
3
2
30

)

, s2 =
(

2
3
1
30

)

. The symmorphic space group is 191 with a maximal point
group D6h at (000) with generators C6 (z), C2 (0) and I (indicated in Figure 4). Clearly C6s1 = s2. The local
pointgroup at the two sites is D3h with generators C3, C2 (0) and 6 = IC6. For the sake of definitness let’s
define operations. We understand the operation g to actively transform the basis vectors ex,y,z like

gET = E
TR (g)

where R (g) is the 3D representation matrix. For example

g = C6 =







1
2 −

√
3
2 0√

3
2

1
2 0

0 0 1







The coordinates r of a vector r = E
T r then transform with the transposed matrix: r′T = rTR (g)T (proof:

E
T r′ = gr = E

TR (g) r). A set of functions of the coordinates (orbitals) transforms as

gfm (r) = fm
(

g−1r
)

= fm
(

rTR (g)
)

=
∑

n

fn (r)D
f
nm (g)
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where Df
nm (g) are the representation matrices of the group in the space spanned by fm. In other words the

orbitals gfm (r) are also actively transformes like the cartesian basis vectors ex,y,z.

In our examples we have a light p element siting at the two sites of lower than maximal symmetry. The essential
basis atoms are one s and three p orbitals. Figure 5 shows the band structure of MgB2, where the boron bands
are highlighted. (The Mg bands do not play a big role in this energy window.)
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Figure 5: Bandweights of boron in MgB2

The irreducible representations of the site symmetry D3h make px,y an E′′ doublet and pz a A′′
2 singlet, while

the s-orbital represents an A′
1 singlet. In total we have 8 oribitals and hence bands. Due to the symmetry the

pz bands largely decouple from the other orbitals along high symmetry lines in the kz = 0 and kz = π
cH

planes.
At general points they off course couple. Furthermore, these bands cross the Fermi level, while the s and px,y
bands form bonding and anti-bonding band complexes of three bands each separated by a gap. The bonding
band complex has exactly three bands, while the AB complex shows a high degree of band entangling wiht
other bands. The two pz bands cannot be separated into two distinct bands because of their Fermi surface and
symmetry. However the planar-orbital bands can be represented by different kinds of Wannier functions. The
simplest way of defining WFs is to use the atomic s, px,y orbitals sitting at the two sites. This more or less
reproduces the FPLO band characters. Another alternative is to try to find WFs for the bonding bands (anti-
bonding) bands only). There are essentially three bands in each band complex and it is imediately clear that
atom centered functions cannot fulfill the crystall symmetry due to the number of sites (two). The bands must
be combinations of orbitals from both sites and hence an odd (3) number of orbitals from an even number of
sites (2) cannot be symmetric. We discussed the irreducible representations of the orbitals in the site symmetry
above. We have a singlet (s) and a doublet (px,y) (as is reflected in the degeneracies at the Γ-point) but all
three orbitals are mixed in the bonding bands (no further decoupling).

x

s1

s2

Figure 6: sp2-hybrid basis. The left panel shows one sp2-orbital at both sites (filled) and the remaining two
120◦/240◦-rotated orbitals at s1 (open). The right panel show a bonding bond-centered combination (full) and
two symmetry related combinations (open).
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MgB2 FPLO character and Wannier fit
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Figure 7: Wannier function fit with 3 sp2-orbital per site.

Unfortunately, there is hardly a simple linear combination of say the px,y orbitals from both sites, which will
fulfill the full crystal symmetry. Hence, we have to resort to reducible representations aiming at constructing
as highly symmetric orbitals as possible. The well known answer is of course sp2 hybrids. We introduce the
following orbitals at each site





Φ1

Φ2

Φ3



 =
1√
3





s+
√
2px

s+
√
2C3px

s+
√
2C2

3px





which are depicted in Figure 6.

Obviously, C3px is not parallel to px and hence contains some py. On the other hand
(

1 + C3 + C2
3

)

= 3P‖
where P‖ is a projector onto the rotation axis. For in-plane objects P‖px,y = 0. This consideration shows that
the p-parts of Φ1,2,3 are linearly dependent, however, with the s-admixture they span the same space as s and

px,y. The factors are choosen such that |Φi|2 = 1 and that
∑

i |Φi|2 contains one |s|2 density and two |p|2
densities.

Now, we can put three sp2 hybrids onto each site (rotated by 180◦ at the second site, which is not really
necessary) and clearly they posses maximum crystal symmetry. (Figure 6, left panel). The symmetry relations
are

C6Φs2,1 = Φs1,3, . . .

C3Φs,1 = Φs,2, . . .

C2 (0)Φs2,1 = Φs2,1, C2 (0)Φs2,2 = Φs2,3, . . .

IΦs2,1 = Φs1,2, . . .

The resulting Wannier function fat bands are shown in Figure 7.

The advantage of this high symmetry is that we now can create linear combinations of one sp2 from each site
at the bond centers and by construction this generates symmetry related additional two similar combinations
(Figure 6, right panel). This were not possible if we used the irreducible s and pxy orbitals. In that way one
can separate the bonding from the anti-bonding orbitals. This is an examples for the fact that in many covalent
p-electron systems the bonding/anti-bonding bands must be described by bond-centered Wannier functions.
(Carbon chain: sp1, diamond sp3). Once we have separated the bonding Wannier functions, we can of course
produce either a separate fit for the bonding or anti-bonding bands respectively (Figure 8) or a fit for bonding
and anti-bonding bands together (however with clear energy separation of the orbital).
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Figure 8: Bonding/anti-bonding bond centered Wannier function fits.

One last consideration concerns the choice of energy windows. For the entangled anti-bonding bands to be fitted
better we put a narrow energy window onto the occupied bonding bands but allow for a large Gaussian tail
at the upper side of the enrgy window. This pulls the majority weight from the well separated bonding bands
and magically adds the missing anti-bonding weights. If we extend the main energy window to encompass the
anti-bonding bands it would pull in weights from higher lying bands, which also show s and px,y character,
which in turn pulls the fitted bands up in energy.
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