DFT calculation of electronic structure: an introduction

Application to K-edge XAS

Amélie Juhin

Sorbonne Université-CNRS (Paris)

Slide courtesy: Delphine Cabaret
probe of **structural** and electronic **properties** of materials

local probe: up to 5-10 Å around the absorbing element

1 eV shift

coordination number fingerprint

tremendous amount of information

needs for calculations

Quanty School 2019
About XANES spectroscopy at the K-edge

probe of structural and **electronic properties** of materials

selection rules \(\rightarrow\) **selective** probe of **empty states** localized on the absorber

\[K\text{ edge: } 1s \rightarrow p\text{ transitions (mainly)}\]

tremendous amount of information **with variable core-hole effects**
Basic issue: calculation of the absorption cross section for a material, i.e., a system of N electrons + N_{at} nuclei

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \hbar\omega \sum_{i,f} \frac{1}{d_i} |\langle f|\mathcal{O}|i\rangle|^2 \delta(E_f - E_i - \hbar\omega)$$

- **incident x-ray energy**
- **operator of the interaction between x-rays and the system**
- **final state:** excited state of the system of energy E_f
- **initial state:** ground state of the system with energy E_i, degenerescence d_i

strong e^- - e^- interaction
- **multielectronic** approach (LFM)
- ex: $L_{2,3}$ edges of 3d elements

weak e^- - e^- interaction
- **monoelectronic** approach (Density Functional Theory)
- ex: K edges

Quanty School 2019
Part 1
Introduction to electronic structure calculation using DFT
Basic issue

System composed of N_{at} atoms:

- N electrons, mass m, charge $q < 0$, position r_i ($i = 1, \ldots, N$)
- N_{at} nuclei, mass M_I, charge q_I, position R_I ($I = 1, \ldots, N_{\text{at}}$)

$$H_{\text{syst.}} = T_e + T_{\text{nucl}} + V_{\text{nucl–nucl}} + V_{\text{e–nucl}} + V_{\text{e–e}}$$

$$T_e = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2$$

$$T_{\text{nucl}} = \sum_{I=1}^{N_{\text{at}}} -\frac{\hbar^2}{2M_I} \nabla_I^2$$

$$V_{\text{nucl–nucl}} = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{I} \sum_{J \neq I} \frac{q_I q_J}{|R_I - R_J|}$$

$$V_{\text{e–nucl}} = \frac{1}{4\pi\varepsilon_0} \sum_{I} \sum_{j} \frac{qq_I}{|r_i - R_I|}$$

$$V_{\text{e–e}} = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{i} \sum_{j \neq i} \frac{q^2}{|r_i - r_j|}$$
Born-Oppenheimer approximation

\[m < M_I \quad (m / m_{\text{proton}} \approx 1836) \]

Order of magnitude of the velocity ratio

Electron: \[\frac{1}{2} m v_e^2 = 1 \text{Ry} \approx 10 \text{ eV} \]

Nucleus: \[\frac{1}{2} M_I v_I^2 \approx \hbar \omega_{\text{vib}} \approx 10 \text{ meV} \]

\[\frac{v_e}{v_{\text{nuclear}}} \approx \sqrt{\frac{M_I}{m}} \frac{10 \text{eV}}{10 \text{meV}} \approx 10^3 \]

The nuclear motion is much slower than the electronic motion \(\Rightarrow \) separation

The nuclei are considered at fixed positions in the electronic motion study

Positions \(R_I \) \(\Rightarrow \) parameter
Born-Oppenheimer approximation

Electronic Hamiltonian

\[H_e^{\{R_I\}} = T_e + V_{e-e} + V_{e-nucl} + V_{nucl-nucl} \]

\[H_e^{\{R_I\}} |\psi_n^{\{R_I\}}\rangle = E_n^{\{R_I\}} |\psi_n^{\{R_I\}}\rangle \]
Multielectronic Schrödinger equation

\[H \, \psi_n = E_n \, \psi_n \]

\[e = \frac{|q|}{\sqrt{4\pi \varepsilon_0}} \]

\[H = \sum_i \left(\frac{-\hbar^2 \nabla_i^2}{2m} + \sum_I \frac{-Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} \right) + \frac{1}{2} \sum_i \sum_{j \neq i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \]

\[\psi_n \equiv \psi_n(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N; \mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_N) \]

\(\text{antisymmetric (electrons are fermions)} \)
We can solve it for a system of non-interacting electrons!

\[H \psi_n = E_n \psi_n \]

\[H = \sum_{i=1}^{N} H_{\text{mono}}^{(i)} \quad \text{with} \quad H_{\text{mono}}^{(i)} = T^{(i)} + V_{\text{nucl}}^{(i)} \]

\[H_{\text{mono}} \phi_\alpha = \epsilon_\alpha \phi_\alpha \quad \alpha = 1, \ldots, \infty \]

\[\psi_n : \text{Slater determinant (SD)} \quad - 1929 \]

\[\text{build from } N \text{ spinorbital functions } \phi_\alpha \]
Slater Determinant

Ground state

\[\psi_{gs} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1^{(1)} & \phi_2^{(1)} & \cdots & \phi_N^{(1)} \\ \phi_1^{(2)} & \phi_2^{(2)} & \cdots & \phi_N^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1^{(N)} & \phi_2^{(N)} & \cdots & \phi_N^{(N)} \end{vmatrix} \]

\[E_{gs} = \sum_{i=1}^{N} \epsilon_i \]

Properties:

- antisymmetric
- Pauli exclusion principle satisfied
The Slater determinants form a **basis** in the N-electrons Hilbert space

\[H \psi_n = E_n \psi_n \]

\[H = \sum_i \left(-\hbar^2 \nabla_i^2 \right) + \sum_I -\frac{Z_I e^2}{|r_i - R_I|} \right) + \frac{1}{2} \sum_i \sum_{j \neq i} e^2 \left| r_i - r_j \right| \]

\[\psi_n \equiv \psi_n(r_1, r_2, \ldots, r_N; s_1, s_2, \ldots, s_N) \]

\[C_{\alpha_{\text{max}}}^N = \frac{\alpha_{\text{max}}!}{N!(\alpha_{\text{max}} - N)!} \]

- $N = 5$
 - $\alpha_{\text{max}} = 10 \implies 252 \text{ SD}$
 - $\alpha_{\text{max}} = 20 \implies 15, 504 \text{ SD}$
 - $\alpha_{\text{max}} = 50 \implies 2, 118, 760 \text{ SD}$
- $N = 20$
 - $\alpha_{\text{max}} = 30 \implies 3, 004, 015 \text{ SD}$

Quanty School 2019
Mean-field approximation

Non-interacting electrons

Exact solution: SD

Mean-field approximation

Approximative solutions

Interacting electrons

Exact solution: ∞ LC of SD

Exact multielectronic Hamiltonian

\[
H = \sum_i \left[T^{(i)} + V_{\text{nucl}}^{(i)} \right] + \frac{1}{2} \sum_i \sum_{j \neq i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} \]

\[
V_{\text{e-e}}
\]

Effective multielectronic Hamiltonian: mean-field Hamiltonian

\[
H_{\text{eff}} = \sum_{i=1}^{N} H_{\text{mono}}^{\text{eff},(i)}
\]

\[
H_{\text{eff}}^{\text{mono}} = -\frac{\hbar^2 \nabla^2}{2m} + V_{\text{nucl}}(\mathbf{r}) + V_{\text{eff}}(\mathbf{r})
\]

Solutions: Slater determinants

Quanty School 2019
Monoatomic Schrödinger solved \textbf{self-consistently} (SCF)

\[
\left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{nucl}}(\mathbf{r}) + V_{[\rho]}(\mathbf{r})\right] \phi_i^{\text{eff}}(\mathbf{r}) = \epsilon_i^{\text{eff}} \phi_i^{\text{eff}}(\mathbf{r})
\]

with \[
\langle \phi_i^{\text{eff}} | \phi_j^{\text{eff}} \rangle = \delta_{ij}
\]

electron density

\[
\rho(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i^{\text{eff}}(\mathbf{r})|^2
\]
Mean-field methods: examples

- Hartree (H)
- Hartree-Fock (HF)
- Density Functional Theory (DFT)
Hartree (H) - 1927

\[
\left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{nucl}}(\mathbf{r}) + V_{[\rho]}^{\text{eff}}(\mathbf{r}) \right] \phi_i^{\text{eff}}(\mathbf{r}) = \varepsilon_i^{\text{eff}} \phi_i^{\text{eff}}(\mathbf{r})
\]

\[
V_H(\mathbf{r}) = e^2 \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}'
\]

Coulomb interaction between one electron and the electron density

\[
\frac{-\hbar^2 \nabla^2}{2m} \phi_i^{\text{eff}}(\mathbf{r}) + V_{\text{nucl}}(\mathbf{r}) \phi_i^{\text{eff}}(\mathbf{r}) + e^2 \sum_{j=1}^{N} \int \frac{\phi_j^{\text{eff}}(\mathbf{r}')^2}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' \phi_i^{\text{eff}}(\mathbf{r}) = \varepsilon_i^{\text{eff}} \phi_i^{\text{eff}}(\mathbf{r})
\]

includes a self-interaction term (if \(i = j \))

Hartree multielectronic wave function = product of monoelectronic wave functions

Pauli exclusion principle exchange not taken into account

Quanty School 2019
exchange included: the multielectronic wave function as a (unique) SD

additional term that depends on the spin state and the antisymmetric character of the SD:

\[- \sum_{j=1}^{N} \delta_{s_i s_j} \int \frac{\phi_j^{\text{eff}}(\mathbf{r}') \phi_i^{\text{eff}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' \, \phi_j^{\text{eff}}(\mathbf{r})\]

strictly compensates the self-interaction term when electrons i and j have the same spin state

BUT no correlation between electrons with opposite spins

Correlation energy: difference between the exact total energy of N-electrons system and the total energy obtained using HF
Density functional theory (DFT): definition

exact theory

for systems of \(N\) interacting electrons

within an external potential

\[
H = \sum_i -\frac{\hbar^2 \nabla^2_i}{2m} + \sum_i V_{\text{nucl}}(\mathbf{r}_i) + \frac{1}{2} \sum_i \sum_{j \neq i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}
\]

\[
H \psi_n = E_n \psi_n
\]

\[
\psi_n \equiv \psi_n(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N; \mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_N)
\]

\[
\rho(\mathbf{r})
\]
The (non-degenerate) **ground state electron density** uniquely determines (to a constant) the **external potential** (and thus all the properties of the system).

There is a **universal density functional** $F[\rho]$, not depending explicitly on $V^{\text{ext}}(r)$, defined as:

$$F[\rho] = T[\rho] + V_{\text{e-e}}[\rho] \quad \text{with} \quad \int \rho(r) \, dr = N$$
DFT: Hohenberg and Kohn (1964)

Total energy

\[E \equiv E[\rho] = F[\rho] + \int V^{\text{ext}}(r)\rho(r) \, dr \]

Variational principle

Exact theory but

\[F[\rho] = T[\rho] + V_{\text{e-e}}[\rho] = \text{???} \]

question 1
DFT: Kohn and Sham (1965)

Hohenberg - Kohn theorems valid for any N-electrons system

also valid for N non-interacting electrons ($V_{e-e} = 0$)

Kohn – Sham ansatz

We can find an external potential $V_{KS}(r)$ for a fictitious system of non-interacting electrons, giving the same ground state electron density as the real system

Exact theory **BUT**

$V_{KS}(r) = ???$

question 2
DFT: Kohn and Sham (1965)

Kohn-Sham fictitious system:

System of N non-interacting electrons, in an external potential $V_{KS}(r)$, which gives the same gs electron density as the real system.

Ground state: SD build from N orbitals (monoelectronic)

Kohn-Sham orbitals solutions of:

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + V_{KS}(r) \right) \phi_{\alpha}^{KS}(r) = \epsilon_{\alpha}^{KS} \phi_{\alpha}^{KS}(r) \quad (1)$$

Electron density

$$\rho(r) = \sum_{i=1}^{N} |\phi_{i}^{KS}(r)|^2$$

Kinetic energy of the fictitious system

$$T_s[\rho] = \frac{-\hbar^2}{2m} \sum_{i=1}^{N} \int \phi_{i}^{KS}(r)^* \nabla^2 \phi_{i}^{KS}(r) dr \quad (indice \ s: \ « \ single \ particle \ »)$$

$$F[\rho] = T[\rho] + V_{\text{ee}}[\rho] = T_s[\rho] + V_{\text{ee}}[\rho] + (T[\rho] - T_s[\rho])$$
DFT: Kohn and Sham (1965)

What we can write as a functional of the electron density in V_{e-e}:

Hartree energy:
$$E_H[\rho] = \frac{e^2}{2} \int \frac{\rho(r)\rho(r')}{|r - r'|} \, dr \, dr'$$

$$F[\rho] = T_s[\rho] + V_{e-e}[\rho] + (T[\rho] - T_s[\rho])$$

$$= T_s[\rho] + E_H[\rho] + (T[\rho] - T_s[\rho] + V_{e-e}[\rho] - E_H[\rho])$$

$E_{xc}[\rho]$
exchange and correlation energy

we partially answered question 1!
DFT: Kohn and Sham (1965)

Total energy

\[E[\rho] = T_s[\rho] + V_H[\rho] + V_{xc}[\rho] + \int V^{\text{ext}}(\mathbf{r})\rho(\mathbf{r}) \, d\mathbf{r} \]

minimization \quad \rightarrow \quad \text{Ground state total energy}

variational principle applied to \(E[\rho] \) with respect to KS orbitals with the constraint:

\[\int \phi_i^{KS}(\mathbf{r})^* \phi_j^{KS}(\mathbf{r}) d\mathbf{r} = \delta_{ij} \]

\[
\left(\frac{-\hbar^2 \nabla^2}{2m} + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) + V^{\text{ext}}(\mathbf{r}) \right) \phi_\alpha^{KS}(\mathbf{r}) = \epsilon_\alpha^{KS} \phi_\alpha^{KS}(\mathbf{r})
\]

exchange and correlation potential

\[V_{xc} = \frac{\delta E_{xc}}{\delta \rho(\mathbf{r})} \]
DFT: Kohn and Sham (1965)

Kohn-Sham equations

\[
\left(-\frac{\hbar^2 \nabla^2}{2m} + V_H(r) + V_{xc}(r) + V^{\text{ext}}(r) \right) \phi^{\text{KS}}_{\alpha}(r) = \epsilon^{\text{KS}}_{\alpha} \phi^{\text{KS}}_{\alpha}(r) \tag{2}
\]

Schrödinger equations of the fictitious system

\[
\left(-\frac{\hbar^2 \nabla^2}{2m} + V^{\text{KS}}(r) \right) \phi^{\text{KS}}_{\alpha}(r) = \epsilon^{\text{KS}}_{\alpha} \phi^{\text{KS}}_{\alpha}(r) \tag{1}
\]

Kohn – Sham potential

\[
V^{\text{KS}}(r) = V_H(r) + V_{xc}(r) + V^{\text{ext}}(r)
\]

We partially answered question 2!
DFT: Kohn and Sham (1965)

Ground state: self-consistent field (SCF) resolution of the Kohn–Sham equations

\[
\left(\frac{-\hbar^2 \nabla^2}{2m} + V_H(r) + V_{xc}(r) + V^{\text{ext}}(r) \right) \phi^{\text{KS}}_\alpha(r) = \epsilon^{\text{KS}}_\alpha \phi^{\text{KS}}_\alpha(r)
\]

Exact theory:

A V_{xc} potential that **compensates** the approximations introduced by the mean-field approaches **necessarily** exist!

In practice:

Different forms of exchange-correlation functionals

DFT

Exact theory useless

≈

Approximate theory widely used
In the LDA, DFT is still exact for an homogeneous electron gas.

The Local Density Approximation (LDA)

\[E_{\text{xc}}^{\text{LDA}} \equiv \int \epsilon_{\text{xc}}[\rho(r)] \rho(r) \, dr \]

- exchange - correlation energy for a particle in a homogeneous electron gas (with density \(\rho \))

\[\epsilon_{\text{xc}}[\rho] = \epsilon_x[\rho] + \epsilon_c[\rho] \]

- known analytically (Dirac exchange energy)
- calculated using Ceperley-Alder Monte-Carlo method, or other parametrization (ex: Hedin-Lundqvist)
Generalized Gradient Approximation (GGA)

\[E_{xc}^{GGA} \equiv \int \epsilon_{xc}[\rho(\mathbf{r}), \nabla \rho(\mathbf{r})] \rho(\mathbf{r}) d\mathbf{r} \]

the density gradient at \(\mathbf{r} \) is taken into account

Various parameterizations

example: the PBE functional

J.P. Perdew, K. Burke & M. Ernzerhof

Hybrid functionals (H-GGA)

combine the exchange correlation obtained by using GGA methods with a given proportion of the exchange described by Hartree-Fock

The most used: B3LYP (Becke - 3 parameters - Lee, Yang, Parr)

\[
E_{xc}^{\text{B3LYP}} = E_{xc}^{\text{LDA}} + a_0 (E_x^{\text{HF}} - E_x^{\text{LDA}}) + a_x (E_x^{\text{GGA}} - E_x^{\text{LDA}}) + a_c (E_c^{\text{GGA}} - E_c^{\text{LDA}})
\]
DFT: SCF cycle

1st step

Crystal structure

atomic calculation ➔ atomic ρ

Superimposition of atomic ρ

ρ crystal = ρ_{in}
DFT: SCF cycle

Potential calculation
Poisson equation

KS orbitals calculation
Kohn and Sham equations

Calculation of $\rho_{\text{out}}(r)$

Convergence?

mixing
$\rho_{\text{in}}(r)$ & $\rho_{\text{out}}(r)$

$(1 - \alpha)\rho_{\text{in}} + \alpha\rho_{\text{out}}$

$\rho_{\text{in}}(r)$

NO

STOP

YES
Solid state physics and quantum chemistry

<table>
<thead>
<tr>
<th>DFT Softwares</th>
<th>DFT Softwares</th>
<th>DFT Softwares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abinit</td>
<td>EXCITING</td>
<td>ParaGauss</td>
</tr>
<tr>
<td>ADF</td>
<td>Fireball</td>
<td>PARATEC</td>
</tr>
<tr>
<td>AIMPRO</td>
<td>FLEUR</td>
<td>PARSEC</td>
</tr>
<tr>
<td>Augmented Spherical Wave</td>
<td>GAMESS (UK)</td>
<td>PC GAMESS</td>
</tr>
<tr>
<td>Atomistix Toolkit</td>
<td>GAMESS (US)</td>
<td>PLATO</td>
</tr>
<tr>
<td>CADPAC</td>
<td>GAUSSIAN</td>
<td>Parallel Quantum Solutions</td>
</tr>
<tr>
<td>CASTEP</td>
<td>GPAW</td>
<td>PWscf (Quantum Espresso)</td>
</tr>
<tr>
<td>CP2K</td>
<td>JAGUAR</td>
<td>Q-Chem</td>
</tr>
<tr>
<td>CPMD</td>
<td>MOLCAS</td>
<td>SIESTA</td>
</tr>
<tr>
<td>CRYSTAL</td>
<td>MOLPRO</td>
<td>Socorro</td>
</tr>
<tr>
<td>DACAPO</td>
<td>MPQC</td>
<td>Spartan</td>
</tr>
<tr>
<td>DALTON</td>
<td>NWChem</td>
<td>SPR-KKR</td>
</tr>
<tr>
<td>deMon2K</td>
<td>OpenMX</td>
<td>TURBOMOLE</td>
</tr>
<tr>
<td>DFT++</td>
<td>ORCA</td>
<td>VASP</td>
</tr>
<tr>
<td>DMol3</td>
<td></td>
<td>WIEN2k</td>
</tr>
</tbody>
</table>

non-exhaustive list
DFT: softwares

real space

cluster

no periodicity constraint (amorphous and crystalline materials)

suited to molecules

or

periodic boundary conditions

infinite number of atoms

1st Brillouin zone

suited to crystals

supercell

the main differences between them
Basis to expand the Kohn-Sham orbitals

\[\phi^K_S(r) = \sum_n c^i_n \varphi_n(r) \]

Plane waves
- Pseudopotentials

Atomic orbitals
- Gaussians
- LCAO
- **ORCA**

Mixed basis
- *atomic spheres*: LC of radial functions × spherical harmonics
- *interstitial region*: plane waves
- LAPW

Muffin-tin orbitals
- spherical waves
- LMTO, multiple scattering
- **SPR-KKR**
Solid state physics and quantum chemistry

<table>
<thead>
<tr>
<th>Software</th>
<th>Software</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abinit</td>
<td>EXCITING</td>
<td>ParaGauss</td>
</tr>
<tr>
<td>ADF</td>
<td>Fireball</td>
<td>PARATEC</td>
</tr>
<tr>
<td>AIMPRO</td>
<td>FLEUR</td>
<td>PARSEC</td>
</tr>
<tr>
<td>Augmented Spherical Wave</td>
<td>GAMESS (UK)</td>
<td>PC GAMESS</td>
</tr>
<tr>
<td>Atomistix Toolkit</td>
<td>GAMESS (US)</td>
<td>PLATO</td>
</tr>
<tr>
<td>CADPAC</td>
<td>GAUSSIAN</td>
<td>Parallel Quantum Solutions</td>
</tr>
<tr>
<td>CASTEP</td>
<td>GPAW</td>
<td>PWscf (Quantum Espresso)</td>
</tr>
<tr>
<td>CP2K</td>
<td>JAGUAR</td>
<td>Q-Chem</td>
</tr>
<tr>
<td>CPMD</td>
<td>MOLCAS</td>
<td>SIESTA</td>
</tr>
<tr>
<td>CRYSTAL</td>
<td>MOLPRO</td>
<td>Socorro</td>
</tr>
<tr>
<td>DACAPO</td>
<td>MPQC</td>
<td>Spartan</td>
</tr>
<tr>
<td>DALTON</td>
<td>NWChem</td>
<td>SPR-KKR</td>
</tr>
<tr>
<td>deMon2K</td>
<td>OpenMX</td>
<td>TURBOMOLE</td>
</tr>
<tr>
<td>DFT++</td>
<td>ORCA</td>
<td>VASP</td>
</tr>
<tr>
<td>DMol3</td>
<td></td>
<td>WIEN2k</td>
</tr>
</tbody>
</table>

non-exhaustive list

Part 2
Introduction to the calculation of X-ray absorption spectra

X-ray Absorption Near-Edge Structure

Near-Edge X-ray Absorption Fine Structure
Basic issue: calculation of the absorption cross section for a material, i.e., a system of \(N \) electrons + \(N_{at} \) nuclei

\[
\sigma(\hbar\omega) = 4\pi^2 \alpha \hbar\omega \sum_{i,f} \frac{1}{d_i} |\langle f | \mathcal{O} | i \rangle|^2 \delta(E_f - E_i - \hbar\omega)
\]

incident x-ray energy

final state:
excited state of the system of energy \(E_f \)

initial state:
ground state of the system with energy \(E_i \), degenerescence \(d_i \)

strong \(e^- - e^- \) interaction
multielectronic approach
ex: \(L_{2,3} \) edges of 3d elements

weak \(e^- - e^- \) interaction
monoelectronic approach
(Density Functional Theory)
ex: \(K \) edges

XANES modeling

Quanty School 2019
Interaction operator between x-rays and electrons

incident X-ray beam: electromagnetic wave treated as a **plane-wave** \(e^{i\mathbf{k} \cdot \mathbf{r}} \)

- \(\mathbf{k} \): wave vector
- \(\mathbf{\hat{e}} \): polarization direction

\[
e^{i\mathbf{k} \cdot \mathbf{r}} = 1 + i\mathbf{k} \cdot \mathbf{r} + \ldots
\]

\[
\mathcal{O} = \sum_i \mathbf{\hat{e}} \cdot \mathbf{r}_i + \frac{i}{2} \sum_i \mathbf{\hat{e}} \cdot \mathbf{r}_i \mathbf{k} \cdot \mathbf{r}_i
\]

- **electric dipole transitions (E1)**
 \[
 \Delta \ell = \pm 1
 \]
 majority electronic transitions

- **electric quadrupole transitions (E2)**
 \[
 \Delta \ell = \pm 2
 \]
 observable in the \(K \) pre-edge of 3\textit{d} transition elements
Interaction operator between x-rays and electrons

Electric dipole (E1) transitions: $\Delta \ell = \pm 1$

<table>
<thead>
<tr>
<th>Initial State quantum numbers</th>
<th>Edge</th>
<th>final state symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>ℓ</td>
<td>K</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>L_1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$L_{2,3}$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>M_1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$M_{2,3}$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$M_{4,5}$</td>
</tr>
</tbody>
</table>

- **Delocalised** final state (weak electron repulsion): p
- **Monoelectronic** theories (DFT)
- **Localized** final state (strong electron): $3d$, $4f$
- **Multielectronic** theories (multiplets)
For K edges:

\[
\sigma(\hbar \omega) = 4\pi^2 \alpha \hbar \omega \sum_{i,f} |\langle \psi_f | \hat{\varepsilon} \cdot \mathbf{r} | \psi_i \rangle|^2 \delta(E_f - E_i - \hbar \omega)
\]

monoelectronic empty state (KS) calculated with a 1s core-hole in the electronic configuration of the absorbing atom.
XANES and DFT: the calculation codes

2 types

1- Those written to calculate core-level spectra

- cluster, real space

 at the beginning: multiple scattering (no self-consistency, \textit{muffin-tin} potential)
 continuum, feff, icxanes, ….

2- The electronic structure codes, in which a post SCF-process code was added to calculate core-level spectra

- periodic boundary conditions, reciprocal space
Note: muffin-tin (MT) potential

ZONE I:
- atomic spheres
- spherical symmetry potentials

ZONE II:
- interstitial region
- constant potential

MT

Full Potential
XANES and DFT: the calculation codes

2 types

1- Those written to calculate core-level spectra

cluster, real space

- **at the beginning:** multiple scattering (no self-consistency, *muffin-tin* potential) continuum, feff, icxanes,....
- **at the end of the 90’s:** finite differences method with fdmnes

currently: fdmnes, feff9

2- The electronic structure codes, in which a post SCF-process code was added to calculate core-level spectra

periodic boundary conditions, reciprocal space

Wien2k, CASTEP, Quantum-Espresso (XSpectra),...
With codes using periodic boundary conditions (for crystals), we have to avoid spurious interaction of the excited atom with its periodically repeated images.

- **Large interaction**
 - ○ atom with a core-hole
 - ● atom without a core-hole

- **Weak interaction**
 - ○ atom with a core-hole
 - ● atom without a core-hole

To restore neutrality:
(i) Negative background charge
(ii) Excited electron in conduction band
XANES and DFT: periodic boundary conditions and core hole

Si K edge in α-quartz

unit cell

\[a = 4.91\text{Å}, \ c = 5.40\text{Å} \]

3 Si, 6 O

1×1×1 supercell

= unit cell with 1 core-hole

1 Si*, 2 Si, 6 O

2×2×2 supercell

\[a = 9.82\text{Å}, \ c = 10.80\text{Å} \]

1 Si*, 23 Si, 48 O

without core-hole

interaction between core-holes

convergence

Quanty School 2019
• DFT is dedicated to the calculation of **ground state properties** but *used here for the modeling of excited states*...

 ➡️ possible underestimation of the excitation energies

• **Static** modeling of the **core-hole-electron interaction** through the supercell approach or within a cluster of atoms

• Exchange and correlation **functional is not energy-dependent**

 ➡️ inelastic losses not calculated, the convolution factor is a parameter
• **GW + Bethe-Salpeter equation (BSE)**
 - Shirley and coll.
 - OCEAN interface
 - Olovsson, Puschnig, Ambrosch-Draxl, Lakowski : LAPW

• **TD-DFT** (real-space approaches)
 - FDMNES
 - Quantum-Chemistry codes: Orca, ADF, Q-chem, ...
3d elements in octahedral site

single-particle picture

$3d^0$

- t_{2g}
- e_g

- Ti$^{4+}$
- TiO$_2$ rutile, anatase

- t_{2g}, e_g empty

- Favorable case

$3d^6$

- t_{2g}
- e_g

- Fe$^{2+}$
- FeS$_2$ pyrite
- MbCO protein

- e_g empty

- Acceptable case

$3d^3$

- t_{2g}
- e_g

- Cr$^{3+}$
- ruby, emerald, spinel:Cr, pyrope:Cr

- e_g empty

- Acceptable case

$3d^2$

- t_{2g}
- e_g

- V$^{3+}$
- grossular:V

- t_{2g} partially empty

- Critical case

$3d^5$

- t_{2g}
- e_g

- Fe$^{3+}$
- MbCN protein

- e_g empty

- Critical case

[Cabaret et al. PCCP (2010)]
Ti\(^{4+}\) in octahedral site

TiO\(_2\) rutile, Ti site: centrosymmetric

pre-edge: E2 + *non local* E1

single-particle picture

\[
\begin{array}{c}
3d^0 \\
\downarrow \\
t_{2g}
\end{array}
\]

Absorption (arbit. units)

- **peak A1**
 - local E2 transition 1s \(\rightarrow\) 3d \(t_{2g}\)
- **peak A2**
 - local E2 transition 1s \(\rightarrow\) 3d \(e_g\)
 + non-local E1 transition 1s \(\rightarrow\) \(p\) hybrid. 3d \(t_{2g}\) (neighb.)
- **peak A3**
 - non-local E1 transition 1s \(\rightarrow\) \(p\) hybrid. 3d \(e_g\) (neighb.)

Quanty School 2019
Ti$^{4+}$ in octahedral site

TiO$_2$ rutile, Ti site: centrosymmetric

pre-edge: E_2 + non local E_1

singlet-particle picture

\[
\begin{array}{ccc}
3d^0 & & e_g \\
 & & t_{2g}
\end{array}
\]

- A1 calc. at too high energy!
- WHY?

TiO$_2$ rutile, Ti site: centrosymmetric

pre-edge: E2 + non local E1

single-particle picture

$3d^0$ --- e_g

--- t_{2g}

A1 calc. at too high energy!
The 1s core-hole is not attractive enough...

How to improve?
Ti$^{4+}$ in octahedral site

TiO$_2$ rutile, Ti site: centrosymmetric

pre-edge: $E2 + \text{non local } E1$

Bethe-Salpeter equation

Cr$^{3+}$ in octahedral site

MgAl$_2$O$_4$:Cr$^{3+}$, Cr site: centrosymmetric

pre-edge : E2

single-particle picture

3d3

Origin?

two E2 peaks (at too high energy...)

V$^{3+}$ in octahedral site

Ca$_3$Al$_2$(SiO$_4$)$_3$:V$^{3+}$, V site: centrosymmetric

pre-edge : E2

Three E2 peaks (at 2eV too high energy...)

Origin?

occupied states

spin up + spin down

spin up

spin down

Quanty School 2019
Fe$^{2+}$ in octahedral site

MbCO protein, complex Fe site geometry

\downarrow pre-edge: E2 + local E1

2 peaks essentially E1, but
- at too high energy peak
- A2 too intense

peak A1
$1s \rightarrow p_z - 3d_z^2$ mixing

local E1

peak A2
$1s \rightarrow p_z$ weakly mixed with $3d$
hybridized with π^* of CO

off-site E1

Quanty School 2019

Cabaret et al. PCCP (2010)
Angular dependence of core hole screening in LiCoO$_2$

Electronic structure poorly described in GGA

Gap = 1.7 eV

Better described using Hubbard parameter (U) on Co 3d states

Gap = 2.3 eV
LiCoO$_2$: the Co K pre-edge

Best agreement is obtained when including U and the 1s core hole
LiCoO$_2$: the Co K pre-edge

pre-edge : E2 + nonlocal E1

Peak α : 1s\rightarrow3d (Co*)
Peak β : 1s\rightarrow4p + O(2p) + Co (3d) n.n. in plane
Peak γ : 1s\rightarrow4p + O(2p) + Li (2p)+Co (3d) n.n. out of plane
Inherent **drawbacks** of DFT-LDA/GGA for XANES calculation

- electronic repulsion modeling
- core hole-electron interaction modeling

<table>
<thead>
<tr>
<th>Transition</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3d^0$ (TiO$_2$)</td>
<td>~0.5 eV</td>
</tr>
<tr>
<td>$3d^6$ LS (MbCO, FeS$_2$)</td>
<td>~0.8 eV</td>
</tr>
<tr>
<td>$3d^3$ (Cr-spinel, emerald)</td>
<td>~1 eV</td>
</tr>
<tr>
<td>$3d^5$ LS (MbCN)</td>
<td>~1.7 eV</td>
</tr>
<tr>
<td>$3d^3$ (ruby) and $3d^2$ (V-grossular)</td>
<td>~2 eV</td>
</tr>
</tbody>
</table>

E2 and E1 transitions toward $3d$ (abs) systematically at too high energy

2.4 eV → 1.7 eV for $3d^6$ LS (LiCoO$_2$) Juhin *et al.* PRB 81:115115 (2010)

Inherent **drawbacks** of DFT-LDA/GGA for XANES calculation

- electronic repulsion modeling
- core hole-electron interaction modeling

E2 and E1 transitions toward 3d (abs) **systematically at too high energy**

However, **DFT in LDA/GGA is useful!**

- **number of pre-edge peaks** well reproduced
- **relative intensities and positions** in rather good agreement with experiment
- single-particle description of transitions with
 - E1/E2 character
 - **degree of local and non-local hybridization**
 - spin polarization
- improved with adding U (NiO, LiCoO$_2$, ...)

Summary