~~CLOSETOC~~ ====== Orientation xyz ====== ===== Symmetry Operations ===== ### In the T Point Group, with orientation xyz there are the following symmetry operations ### ### {{:physics_chemistry:pointgroup:t_xyz.png}} ### ### ^ Operator ^ Orientation ^ ^ $\text{E}$ | $\{0,0,0\}$ , | ^ $C_3$ | $\{1,1,1\}$ , $\{1,1,-1\}$ , $\{1,-1,1\}$ , $\{-1,1,1\}$ , $\{-1,-1,-1\}$ , $\{-1,-1,1\}$ , $\{-1,1,-1\}$ , $\{1,-1,-1\}$ , | ^ $C_2$ | $\{0,0,1\}$ , $\{0,1,0\}$ , $\{1,0,0\}$ , | ### ===== Different Settings ===== ### * [[physics_chemistry:point_groups:t:orientation_xyz|Point Group T with orientation xyz]] ### ===== Character Table ===== ### | $ $ ^ $ \text{E} \,{\text{(1)}} $ ^ $ C_3 \,{\text{(8)}} $ ^ $ C_2 \,{\text{(3)}} $ ^ ^ $ \text{A} $ | $ 1 $ | $ 1 $ | $ 1 $ | ^ $ \text{E} $ | $ 2 $ | $ -1 $ | $ 2 $ | ^ $ \text{T} $ | $ 3 $ | $ 0 $ | $ -1 $ | ### ===== Product Table ===== ### | $ $ ^ $ \text{A} $ ^ $ \text{E} $ ^ $ \text{T} $ ^ ^ $ \text{A} $ | $ \text{A} $ | $ \text{E} $ | $ \text{T} $ | ^ $ \text{E} $ | $ \text{E} $ | $ 2 \text{A}+\text{E} $ | $ 2 \text{T} $ | ^ $ \text{T} $ | $ \text{T} $ | $ 2 \text{T} $ | $ \text{A}+\text{E}+2 \text{T} $ | ### ===== Sub Groups with compatible settings ===== ### * [[physics_chemistry:point_groups:c1:orientation_1|Point Group C1 with orientation 1]] * [[physics_chemistry:point_groups:c2:orientation_x|Point Group C2 with orientation X]] * [[physics_chemistry:point_groups:c2:orientation_y|Point Group C2 with orientation Y]] * [[physics_chemistry:point_groups:c2:orientation_z|Point Group C2 with orientation Z]] * [[physics_chemistry:point_groups:d2:orientation_xyz|Point Group D2 with orientation XYZ]] ### ===== Super Groups with compatible settings ===== ### * [[physics_chemistry:point_groups:oh:orientation_xyz|Point Group Oh with orientation XYZ]] * [[physics_chemistry:point_groups:o:orientation_xyz|Point Group O with orientation XYZ]] * [[physics_chemistry:point_groups:td:orientation_xyz|Point Group Td with orientation xyz]] * [[physics_chemistry:point_groups:th:orientation_xyz|Point Group Th with orientation xyz]] ### ===== Invariant Potential expanded on renormalized spherical Harmonics ===== ### Any potential (function) can be written as a sum over spherical harmonics. $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the T Point group with orientation xyz the form of the expansion coefficients is: ### ==== Expansion ==== ### $$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ -i B(3,2) & k=3\land m=-2 \\ i B(3,2) & k=3\land m=2 \\ \sqrt{\frac{5}{14}} A(4,0) & k=4\land (m=-4\lor m=4) \\ A(4,0) & k=4\land m=0 \\ -\sqrt{\frac{5}{11}} A(6,2) & k=6\land (m=-6\lor m=6) \\ -\sqrt{\frac{7}{2}} A(6,0) & k=6\land (m=-4\lor m=4) \\ A(6,2) & k=6\land (m=-2\lor m=2) \\ A(6,0) & k=6\land m=0 \end{cases}$$ ### ==== Input format suitable for Mathematica (Quanty.nb) ==== ### Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {(-I)*B[3, 2], k == 3 && m == -2}, {I*B[3, 2], k == 3 && m == 2}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}, {A[4, 0], k == 4 && m == 0}, {-(Sqrt[5/11]*A[6, 2]), k == 6 && (m == -6 || m == 6)}, {-(Sqrt[7/2]*A[6, 0]), k == 6 && (m == -4 || m == 4)}, {A[6, 2], k == 6 && (m == -2 || m == 2)}, {A[6, 0], k == 6 && m == 0}}, 0] ### ==== Input format suitable for Quanty ==== ### Akm = {{0, 0, A(0,0)} , {3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} , {4, 0, A(4,0)} , {4,-4, (sqrt(5/14))*(A(4,0))} , {4, 4, (sqrt(5/14))*(A(4,0))} , {6, 0, A(6,0)} , {6,-2, A(6,2)} , {6, 2, A(6,2)} , {6,-4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6, 4, (-1)*((sqrt(7/2))*(A(6,0)))} , {6,-6, (-1)*((sqrt(5/11))*(A(6,2)))} , {6, 6, (-1)*((sqrt(5/11))*(A(6,2)))} } ### ==== One particle coupling on a basis of spherical harmonics ==== ### The operator representing the potential in second quantisation is given as: $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$ ### ### we can express the operator as $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ ### ### The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter. ### ### | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{i \text{Bsf}(3,2)}{\sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{i \text{Bsf}(3,2)}{\sqrt{7}} }$|$\color{darkred}{ 0 }$| ^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $| ^$ {Y_{0}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0) $|$ 0 $|$\color{darkred}{ \frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| ^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $| ^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{5}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) }$|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{i \text{Bdf}(3,2)}{\sqrt{21}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ {Y_{0}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ -\frac{1}{7} i \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{i \text{Bdf}(3,2)}{\sqrt{21}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) }$| ^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{7} i \sqrt{3} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$ \frac{5}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)+\frac{1}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $|$ 0 $|$ -\frac{10}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ \frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2) $| ^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ -\frac{i \text{Bsf}(3,2)}{\sqrt{7}} }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $|$ \frac{20}{429} \sqrt{14} \text{Aff}(6,2) $|$ 0 $|$ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $|$ 0 $| ^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{i \text{Bdf}(3,2)}{\sqrt{21}} }$|$\color{darkred}{ 0 }$|$ -\frac{10}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ -\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2) $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $| ^$ {Y_{0}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ -\frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2 i \text{Bdf}(3,2)}{3 \sqrt{7}} }$|$ 0 $|$ \frac{20}{429} \sqrt{14} \text{Aff}(6,2) $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ \frac{20}{429} \sqrt{14} \text{Aff}(6,2) $|$ 0 $| ^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{i \text{Bdf}(3,2)}{\sqrt{21}} }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ -\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2) $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $|$ 0 $|$ -\frac{10}{429} \sqrt{7} \text{Aff}(6,2) $| ^$ {Y_{2}^{(3)}} $|$\color{darkred}{ \frac{i \text{Bsf}(3,2)}{\sqrt{7}} }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{5}{33} \text{Aff}(4,0)-\frac{70}{143} \text{Aff}(6,0) $|$ 0 $|$ \frac{20}{429} \sqrt{14} \text{Aff}(6,2) $|$ 0 $|$ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $|$ 0 $| ^$ {Y_{3}^{(3)}} $|$\color{darkred}{ 0 }$|$ -\frac{1}{3} \sqrt{\frac{10}{21}} \text{Apf}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$ \frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,2) $|$ 0 $|$ \frac{1}{11} \sqrt{\frac{5}{3}} \text{Aff}(4,0)+\frac{35}{143} \sqrt{\frac{5}{3}} \text{Aff}(6,0) $|$ 0 $|$ -\frac{10}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ \text{Aff}(0,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $| ### ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== ### Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field ### ### | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| ^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| ^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| ^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| ^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| ^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| ### ==== One particle coupling on a basis of symmetry adapted functions ==== ### After rotation we find ### ### | $ $ ^ $ \text{s} $ ^ $ p_x $ ^ $ p_y $ ^ $ p_z $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ ^$ \text{s} $|$ \text{Ass}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ p_x $|$\color{darkred}{ 0 }$|$ \text{App}(0,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_y $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0,0)+\frac{2}{7} \text{Add}(4,0) $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{7} \sqrt{6} \text{Bpd}(3,2) }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0,0)-\frac{4}{21} \text{Add}(4,0) $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| ^$ f_{\text{xyz}} $|$\color{darkred}{ -\sqrt{\frac{2}{7}} \text{Bsf}(3,2) }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \text{Aff}(0,0)-\frac{4}{11} \text{Aff}(4,0)+\frac{80}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ f_{x\left(5x^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ 0 $| ^$ f_{y\left(5y^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $| ^$ f_{z\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{2}{3} \sqrt{\frac{2}{7}} \text{Bdf}(3,2) }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $|$ 0 $|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $| ^$ f_{x\left(y^2-z^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $|$ 0 $|$ 0 $| ^$ f_{y\left(z^2-x^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $|$ 0 $| ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \frac{40}{429} \sqrt{7} \text{Aff}(6,2) $|$ 0 $|$ 0 $|$ \text{Aff}(0,0)-\frac{2}{33} \text{Aff}(4,0)-\frac{60}{143} \text{Aff}(6,0) $| ### ===== Coupling for a single shell ===== ### Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$. ### ### Click on one of the subsections to expand it or ### ==== Potential for s orbitals ==== ### $$A_{k,m} = \begin{cases} \text{Ea} & k=0\land m=0 \\ 0 & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{Ea, k == 0 && m == 0}}, 0] ### ### Akm = {{0, 0, Ea} } ### ### | $ $ ^ $ {Y_{0}^{(0)}} $ ^ ^$ {Y_{0}^{(0)}} $|$ \text{Ea} $| ### ### | $ $ ^ $ \text{s} $ ^ ^$ \text{s} $|$ \text{Ea} $| ### ### | $ $ ^ $ {Y_{0}^{(0)}} $ ^ ^$ \text{s} $|$ 1 $| ### ### ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_0_1.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2 \sqrt{\pi }}$$ | ::: | ### ==== Potential for p orbitals ==== ### $$A_{k,m} = \begin{cases} \text{Et} & k=0\land m=0 \\ 0 & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{Et, k == 0 && m == 0}}, 0] ### ### Akm = {{0, 0, Et} } ### ### | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ ^$ {Y_{-1}^{(1)}} $|$ \text{Et} $|$ 0 $|$ 0 $| ^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Et} $|$ 0 $| ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Et} $| ### ### | $ $ ^ $ p_x $ ^ $ p_y $ ^ $ p_z $ ^ ^$ p_x $|$ \text{Et} $|$ 0 $|$ 0 $| ^$ p_y $|$ 0 $|$ \text{Et} $|$ 0 $| ^$ p_z $|$ 0 $|$ 0 $|$ \text{Et} $| ### ### | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ ^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| ^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $| ^$ p_z $|$ 0 $|$ 1 $|$ 0 $| ### ### ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_1_1.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \cos (\phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} x$$ | ::: | ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_1_2.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \sin (\theta ) \sin (\phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} y$$ | ::: | ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_1_3.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{3}{\pi }} z$$ | ::: | ### ==== Potential for d orbitals ==== ### $$A_{k,m} = \begin{cases} \frac{1}{5} (2 \text{Ee}+3 \text{Et}) & k=0\land m=0 \\ 0 & k\neq 4\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ \frac{3}{2} \sqrt{\frac{7}{10}} (\text{Ee}-\text{Et}) & k=4\land (m=-4\lor m=4) \\ \frac{21 (\text{Ee}-\text{Et})}{10} & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{(2*Ee + 3*Et)/5, k == 0 && m == 0}, {0, k != 4 || (m != -4 && m != 0 && m != 4)}, {(3*Sqrt[7/10]*(Ee - Et))/2, k == 4 && (m == -4 || m == 4)}}, (21*(Ee - Et))/10] ### ### Akm = {{0, 0, (1/5)*((2)*(Ee) + (3)*(Et))} , {4, 0, (21/10)*(Ee + (-1)*(Et))} , {4,-4, (3/2)*((sqrt(7/10))*(Ee + (-1)*(Et)))} , {4, 4, (3/2)*((sqrt(7/10))*(Ee + (-1)*(Et)))} } ### ### | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ ^$ {Y_{-2}^{(2)}} $|$ \frac{\text{Ee}+\text{Et}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ee}-\text{Et}}{2} $| ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Et} $|$ 0 $|$ 0 $|$ 0 $| ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Ee} $|$ 0 $|$ 0 $| ^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et} $|$ 0 $| ^$ {Y_{2}^{(2)}} $|$ \frac{\text{Ee}-\text{Et}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ee}+\text{Et}}{2} $| ### ### | $ $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ ^$ d_{x^2-y^2} $|$ \text{Ee} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{3z^2-r^2} $|$ 0 $|$ \text{Ee} $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{\text{yz}} $|$ 0 $|$ 0 $|$ \text{Et} $|$ 0 $|$ 0 $| ^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et} $|$ 0 $| ^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et} $| ### ### | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ ^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $| ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $| ^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $| ^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $| ^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $| ### ### ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_2_1.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \cos (2 \phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \left(x^2-y^2\right)$$ | ::: | ^ ^$$\text{Ee}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_2_2.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{8} \sqrt{\frac{5}{\pi }} (3 \cos (2 \theta )+1)$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 z^2-1\right)$$ | ::: | ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_2_3.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \sin (\phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} y z$$ | ::: | ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_2_4.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin (2 \theta ) \cos (\phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x z$$ | ::: | ^ ^$$\text{Et}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_2_5.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{15}{\pi }} \sin ^2(\theta ) \sin (2 \phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{15}{\pi }} x y$$ | ::: | ### ==== Potential for f orbitals ==== ### $$A_{k,m} = \begin{cases} \frac{\text{Ea}}{7}+\frac{3 \text{Et1}}{7}+\frac{3 \text{Et2}}{7} & k=0\land m=0 \\ 0 & (k=3\land m=-2)\lor (k=3\land m=2) \\ -\frac{3}{4} \sqrt{\frac{5}{14}} (2 \text{Ea}-3 \text{Et1}+\text{Et2}) & k=4\land (m=-4\lor m=4) \\ -\frac{3}{4} (2 \text{Ea}-3 \text{Et1}+\text{Et2}) & k=4\land m=0 \\ -\frac{39}{8} \sqrt{\frac{11}{35}} \text{Mt} & k=6\land (m=-6\lor m=6) \\ -\frac{39 (4 \text{Ea}+5 \text{Et1}-9 \text{Et2})}{40 \sqrt{14}} & k=6\land (m=-4\lor m=4) \\ \frac{429 \text{Mt}}{40 \sqrt{7}} & k=6\land (m=-2\lor m=2) \\ \frac{39}{280} (4 \text{Ea}+5 \text{Et1}-9 \text{Et2}) & k=6\land m=0 \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{Ea/7 + (3*Et1)/7 + (3*Et2)/7, k == 0 && m == 0}, {0, (k == 3 && m == -2) || (k == 3 && m == 2)}, {(-3*Sqrt[5/14]*(2*Ea - 3*Et1 + Et2))/4, k == 4 && (m == -4 || m == 4)}, {(-3*(2*Ea - 3*Et1 + Et2))/4, k == 4 && m == 0}, {(-39*Sqrt[11/35]*Mt)/8, k == 6 && (m == -6 || m == 6)}, {(-39*(4*Ea + 5*Et1 - 9*Et2))/(40*Sqrt[14]), k == 6 && (m == -4 || m == 4)}, {(429*Mt)/(40*Sqrt[7]), k == 6 && (m == -2 || m == 2)}, {(39*(4*Ea + 5*Et1 - 9*Et2))/280, k == 6 && m == 0}}, 0] ### ### Akm = {{0, 0, (1/7)*(Ea) + (3/7)*(Et1) + (3/7)*(Et2)} , {4, 0, (-3/4)*((2)*(Ea) + (-3)*(Et1) + Et2)} , {4,-4, (-3/4)*((sqrt(5/14))*((2)*(Ea) + (-3)*(Et1) + Et2))} , {4, 4, (-3/4)*((sqrt(5/14))*((2)*(Ea) + (-3)*(Et1) + Et2))} , {6, 0, (39/280)*((4)*(Ea) + (5)*(Et1) + (-9)*(Et2))} , {6,-2, (429/40)*((1/(sqrt(7)))*(Mt))} , {6, 2, (429/40)*((1/(sqrt(7)))*(Mt))} , {6,-4, (-39/40)*((1/(sqrt(14)))*((4)*(Ea) + (5)*(Et1) + (-9)*(Et2)))} , {6, 4, (-39/40)*((1/(sqrt(14)))*((4)*(Ea) + (5)*(Et1) + (-9)*(Et2)))} , {6,-6, (-39/8)*((sqrt(11/35))*(Mt))} , {6, 6, (-39/8)*((sqrt(11/35))*(Mt))} } ### ### | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ {Y_{-3}^{(3)}} $|$ \frac{1}{8} (5 \text{Et1}+3 \text{Et2}) $|$ 0 $|$ -\frac{\text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1}-\text{Et2}) $|$ 0 $|$ \frac{\sqrt{15} \text{Mt}}{4} $| ^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \frac{\text{Ea}+\text{Et2}}{2} $|$ 0 $|$ \frac{\text{Mt}}{\sqrt{2}} $|$ 0 $|$ \frac{\text{Et2}-\text{Ea}}{2} $|$ 0 $| ^$ {Y_{-1}^{(3)}} $|$ -\frac{\text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} (3 \text{Et1}+5 \text{Et2}) $|$ 0 $|$ -\frac{\sqrt{15} \text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1}-\text{Et2}) $| ^$ {Y_{0}^{(3)}} $|$ 0 $|$ \frac{\text{Mt}}{\sqrt{2}} $|$ 0 $|$ \text{Et1} $|$ 0 $|$ \frac{\text{Mt}}{\sqrt{2}} $|$ 0 $| ^$ {Y_{1}^{(3)}} $|$ \frac{1}{8} \sqrt{15} (\text{Et1}-\text{Et2}) $|$ 0 $|$ -\frac{\sqrt{15} \text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} (3 \text{Et1}+5 \text{Et2}) $|$ 0 $|$ -\frac{\text{Mt}}{4} $| ^$ {Y_{2}^{(3)}} $|$ 0 $|$ \frac{\text{Et2}-\text{Ea}}{2} $|$ 0 $|$ \frac{\text{Mt}}{\sqrt{2}} $|$ 0 $|$ \frac{\text{Ea}+\text{Et2}}{2} $|$ 0 $| ^$ {Y_{3}^{(3)}} $|$ \frac{\sqrt{15} \text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} \sqrt{15} (\text{Et1}-\text{Et2}) $|$ 0 $|$ -\frac{\text{Mt}}{4} $|$ 0 $|$ \frac{1}{8} (5 \text{Et1}+3 \text{Et2}) $| ### ### | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ ^$ f_{\text{xyz}} $|$ \text{Ea} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ f_{x\left(5x^2-r^2\right)} $|$ 0 $|$ \text{Et1} $|$ 0 $|$ 0 $|$ \text{Mt} $|$ 0 $|$ 0 $| ^$ f_{y\left(5y^2-r^2\right)} $|$ 0 $|$ 0 $|$ \text{Et1} $|$ 0 $|$ 0 $|$ \text{Mt} $|$ 0 $| ^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Et1} $|$ 0 $|$ 0 $|$ \text{Mt} $| ^$ f_{x\left(y^2-z^2\right)} $|$ 0 $|$ \text{Mt} $|$ 0 $|$ 0 $|$ \text{Et2} $|$ 0 $|$ 0 $| ^$ f_{y\left(z^2-x^2\right)} $|$ 0 $|$ 0 $|$ \text{Mt} $|$ 0 $|$ 0 $|$ \text{Et2} $|$ 0 $| ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Mt} $|$ 0 $|$ 0 $|$ \text{Et2} $| ### ### | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| ^$ f_{x\left(5x^2-r^2\right)} $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $| ^$ f_{y\left(5y^2-r^2\right)} $|$ -\frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ -\frac{i \sqrt{5}}{4} $| ^$ f_{z\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| ^$ f_{x\left(y^2-z^2\right)} $|$ -\frac{\sqrt{3}}{4} $|$ 0 $|$ -\frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{5}}{4} $|$ 0 $|$ \frac{\sqrt{3}}{4} $| ^$ f_{y\left(z^2-x^2\right)} $|$ -\frac{i \sqrt{3}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ \frac{i \sqrt{5}}{4} $|$ 0 $|$ -\frac{i \sqrt{3}}{4} $| ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| ### ### ^ ^$$\text{Ea}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_1.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \sin (2 \phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{2} \sqrt{\frac{105}{\pi }} x y z$$ | ::: | ^ ^$$\text{Et1}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_2.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \cos (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )-5 \cos (2 \theta )-7\right)$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} x \left(5 x^2-15 y^2-15 z^2+3\right)$$ | ::: | ^ ^$$\text{Et1}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_3.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{7}{\pi }} \sin (\theta ) \sin (\phi ) \left(10 \sin ^2(\theta ) \cos (2 \phi )+5 \cos (2 \theta )+7\right)$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} y \left(-15 x^2+5 y^2-15 z^2+3\right)$$ | ::: | ^ ^$$\text{Et1}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_4.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{7}{\pi }} (3 \cos (\theta )+5 \cos (3 \theta ))$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(5 z^2-3\right)$$ | ::: | ^ ^$$\text{Et2}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_5.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{105}{\pi }} \sin (\theta ) \cos (\phi ) \left(2 \sin ^2(\theta ) \cos (2 \phi )+3 \cos (2 \theta )+1\right)$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$-\frac{1}{16} \sqrt{\frac{105}{\pi }} x \left(x^2-3 y^2+5 z^2-1\right)$$ | ::: | ^ ^$$\text{Et2}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_6.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{32} \sqrt{\frac{105}{\pi }} \sin (\theta ) \sin (\phi ) \left(-4 \sin ^2(\theta ) \cos (2 \phi )+6 \cos (2 \theta )+2\right)$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{16} \sqrt{\frac{105}{\pi }} y \left(-3 x^2+y^2+5 z^2-1\right)$$ | ::: | ^ ^$$\text{Et2}$$ | {{:physics_chemistry:pointgroup:t_xyz_orb_3_7.png?150}} | |$$\psi(\theta,\phi)=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} \sin ^2(\theta ) \cos (\theta ) \cos (2 \phi )$$ | ::: | |$$\psi(\hat{x},\hat{y},\hat{z})=\phantom{\sqrt{\frac{1}{1}}}$$ |$$\frac{1}{4} \sqrt{\frac{105}{\pi }} z \left(x^2-y^2\right)$$ | ::: | ### ===== Coupling between two shells ===== ### Click on one of the subsections to expand it or ### ==== Potential for s-f orbital mixing ==== ### $$A_{k,m} = \begin{cases} 0 & k\neq 3\lor (m\neq -2\land m\neq 2) \\ -i B(3,2) & k=3\land m=-2 \\ i B(3,2) & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -2 && m != 2)}, {(-I)*B[3, 2], k == 3 && m == -2}}, I*B[3, 2]] ### ### Akm = {{3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} } ### ### | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ {Y_{0}^{(0)}} $|$ 0 $|$ \frac{i B(3,2)}{\sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i B(3,2)}{\sqrt{7}} $|$ 0 $| ### ### | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ ^$ \text{s} $|$ -\sqrt{\frac{2}{7}} B(3,2) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ### ==== Potential for p-d orbital mixing ==== ### $$A_{k,m} = \begin{cases} 0 & k\neq 3\lor (m\neq -2\land m\neq 2) \\ -i B(3,2) & k=3\land m=-2 \\ i B(3,2) & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -2 && m != 2)}, {(-I)*B[3, 2], k == 3 && m == -2}}, I*B[3, 2]] ### ### Akm = {{3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} } ### ### | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{7} i \sqrt{6} B(3,2) $|$ 0 $| ^$ {Y_{0}^{(1)}} $|$ \frac{1}{7} i \sqrt{3} B(3,2) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{7} i \sqrt{3} B(3,2) $| ^$ {Y_{1}^{(1)}} $|$ 0 $|$ -\frac{1}{7} i \sqrt{6} B(3,2) $|$ 0 $|$ 0 $|$ 0 $| ### ### | $ $ ^ $ d_{x^2-y^2} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{yz}} $ ^ $ d_{\text{xz}} $ ^ $ d_{\text{xy}} $ ^ ^$ p_x $|$ 0 $|$ 0 $|$ -\frac{1}{7} \sqrt{6} B(3,2) $|$ 0 $|$ 0 $| ^$ p_y $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{7} \sqrt{6} B(3,2) $|$ 0 $| ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{7} \sqrt{6} B(3,2) $| ### ==== Potential for p-f orbital mixing ==== ### $$A_{k,m} = \begin{cases} 0 & k\neq 4\lor (m\neq -4\land m\neq 0\land m\neq 4) \\ \sqrt{\frac{5}{14}} A(4,0) & k=4\land (m=-4\lor m=4) \\ A(4,0) & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{0, k != 4 || (m != -4 && m != 0 && m != 4)}, {Sqrt[5/14]*A[4, 0], k == 4 && (m == -4 || m == 4)}}, A[4, 0]] ### ### Akm = {{4, 0, A(4,0)} , {4,-4, (sqrt(5/14))*(A(4,0))} , {4, 4, (sqrt(5/14))*(A(4,0))} } ### ### | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} A(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} A(4,0) $| ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 A(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| ^$ {Y_{1}^{(1)}} $|$ -\frac{1}{3} \sqrt{\frac{10}{21}} A(4,0) $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} \sqrt{\frac{2}{7}} A(4,0) $|$ 0 $|$ 0 $| ### ### | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ ^$ p_x $|$ 0 $|$ \frac{4 A(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_y $|$ 0 $|$ 0 $|$ \frac{4 A(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \frac{4 A(4,0)}{3 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| ### ==== Potential for d-f orbital mixing ==== ### $$A_{k,m} = \begin{cases} 0 & k\neq 3\lor (m\neq -2\land m\neq 2) \\ -i B(3,2) & k=3\land m=-2 \\ i B(3,2) & \text{True} \end{cases}$$ ### ### Akm[k_,m_]:=Piecewise[{{0, k != 3 || (m != -2 && m != 2)}, {(-I)*B[3, 2], k == 3 && m == -2}}, I*B[3, 2]] ### ### Akm = {{3,-2, (-I)*(B(3,2))} , {3, 2, (I)*(B(3,2))} } ### ### | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ ^$ {Y_{-2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{2 i B(3,2)}{3 \sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $| ^$ {Y_{-1}^{(2)}} $|$ \frac{1}{3} i \sqrt{\frac{5}{7}} B(3,2) $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i B(3,2)}{\sqrt{21}} $|$ 0 $|$ 0 $| ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ -\frac{i B(3,2)}{\sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{3} i \sqrt{\frac{5}{7}} B(3,2) $| ^$ {Y_{2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{2 i B(3,2)}{3 \sqrt{7}} $|$ 0 $|$ 0 $|$ 0 $| ### ### | $ $ ^ $ f_{\text{xyz}} $ ^ $ f_{x\left(5x^2-r^2\right)} $ ^ $ f_{y\left(5y^2-r^2\right)} $ ^ $ f_{z\left(5z^2-r^2\right)} $ ^ $ f_{x\left(y^2-z^2\right)} $ ^ $ f_{y\left(z^2-x^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ ^$ d_{x^2-y^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{\text{yz}} $|$ 0 $|$ \frac{2}{3} \sqrt{\frac{2}{7}} B(3,2) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ \frac{2}{3} \sqrt{\frac{2}{7}} B(3,2) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| ^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{2}{3} \sqrt{\frac{2}{7}} B(3,2) $|$ 0 $|$ 0 $|$ 0 $| ### ===== Table of several point groups ===== ### [[physics_chemistry:point_groups|Return to Main page on Point Groups]] ### ### ^Nonaxial groups | [[physics_chemistry:point_groups:c1|C]][[physics_chemistry:point_groups:c1|1]] | [[physics_chemistry:point_groups:cs|C]][[physics_chemistry:point_groups:cs|s]] | [[physics_chemistry:point_groups:ci|C]][[physics_chemistry:point_groups:ci|i]] | | | | | ^Cn groups | [[physics_chemistry:point_groups:c2|C]][[physics_chemistry:point_groups:c2|2]] | [[physics_chemistry:point_groups:c3|C]][[physics_chemistry:point_groups:c3|3]] | [[physics_chemistry:point_groups:c4|C]][[physics_chemistry:point_groups:c4|4]] | [[physics_chemistry:point_groups:c5|C]][[physics_chemistry:point_groups:c5|5]] | [[physics_chemistry:point_groups:c6|C]][[physics_chemistry:point_groups:c6|6]] | [[physics_chemistry:point_groups:c7|C]][[physics_chemistry:point_groups:c7|7]] | [[physics_chemistry:point_groups:c8|C]][[physics_chemistry:point_groups:c8|8]] | ^Dn groups | [[physics_chemistry:point_groups:d2|D]][[physics_chemistry:point_groups:d2|2]] | [[physics_chemistry:point_groups:d3|D]][[physics_chemistry:point_groups:d3|3]] | [[physics_chemistry:point_groups:d4|D]][[physics_chemistry:point_groups:d4|4]] | [[physics_chemistry:point_groups:d5|D]][[physics_chemistry:point_groups:d5|5]] | [[physics_chemistry:point_groups:d6|D]][[physics_chemistry:point_groups:d6|6]] | [[physics_chemistry:point_groups:d7|D]][[physics_chemistry:point_groups:d7|7]] | [[physics_chemistry:point_groups:d8|D]][[physics_chemistry:point_groups:d8|8]] | ^Cnv groups | [[physics_chemistry:point_groups:c2v|C]][[physics_chemistry:point_groups:c2v|2v]] | [[physics_chemistry:point_groups:c3v|C]][[physics_chemistry:point_groups:c3v|3v]] | [[physics_chemistry:point_groups:c4v|C]][[physics_chemistry:point_groups:c4v|4v]] | [[physics_chemistry:point_groups:c5v|C]][[physics_chemistry:point_groups:c5v|5v]] | [[physics_chemistry:point_groups:c6v|C]][[physics_chemistry:point_groups:c6v|6v]] | [[physics_chemistry:point_groups:c7v|C]][[physics_chemistry:point_groups:c7v|7v]] | [[physics_chemistry:point_groups:c8v|C]][[physics_chemistry:point_groups:c8v|8v]] | ^Cnh groups | [[physics_chemistry:point_groups:c2h|C]][[physics_chemistry:point_groups:c2h|2h]] | [[physics_chemistry:point_groups:c3h|C]][[physics_chemistry:point_groups:c3h|3h]] | [[physics_chemistry:point_groups:c4h|C]][[physics_chemistry:point_groups:c4h|4h]] | [[physics_chemistry:point_groups:c5h|C]][[physics_chemistry:point_groups:c5h|5h]] | [[physics_chemistry:point_groups:c6h|C]][[physics_chemistry:point_groups:c6h|6h]] | | | ^Dnh groups | [[physics_chemistry:point_groups:d2h|D]][[physics_chemistry:point_groups:d2h|2h]] | [[physics_chemistry:point_groups:d3h|D]][[physics_chemistry:point_groups:d3h|3h]] | [[physics_chemistry:point_groups:d4h|D]][[physics_chemistry:point_groups:d4h|4h]] | [[physics_chemistry:point_groups:d5h|D]][[physics_chemistry:point_groups:d5h|5h]] | [[physics_chemistry:point_groups:d6h|D]][[physics_chemistry:point_groups:d6h|6h]] | [[physics_chemistry:point_groups:d7h|D]][[physics_chemistry:point_groups:d7h|7h]] | [[physics_chemistry:point_groups:d8h|D]][[physics_chemistry:point_groups:d8h|8h]] | ^Dnd groups | [[physics_chemistry:point_groups:d2d|D]][[physics_chemistry:point_groups:d2d|2d]] | [[physics_chemistry:point_groups:d3d|D]][[physics_chemistry:point_groups:d3d|3d]] | [[physics_chemistry:point_groups:d4d|D]][[physics_chemistry:point_groups:d4d|4d]] | [[physics_chemistry:point_groups:d5d|D]][[physics_chemistry:point_groups:d5d|5d]] | [[physics_chemistry:point_groups:d6d|D]][[physics_chemistry:point_groups:d6d|6d]] | [[physics_chemistry:point_groups:d7d|D]][[physics_chemistry:point_groups:d7d|7d]] | [[physics_chemistry:point_groups:d8d|D]][[physics_chemistry:point_groups:d8d|8d]] | ^Sn groups | [[physics_chemistry:point_groups:S2|S]][[physics_chemistry:point_groups:S2|2]] | [[physics_chemistry:point_groups:S4|S]][[physics_chemistry:point_groups:S4|4]] | [[physics_chemistry:point_groups:S6|S]][[physics_chemistry:point_groups:S6|6]] | [[physics_chemistry:point_groups:S8|S]][[physics_chemistry:point_groups:S8|8]] | [[physics_chemistry:point_groups:S10|S]][[physics_chemistry:point_groups:S10|10]] | [[physics_chemistry:point_groups:S12|S]][[physics_chemistry:point_groups:S12|12]] | | ^Cubic groups | [[physics_chemistry:point_groups:T|T]] | [[physics_chemistry:point_groups:Th|T]][[physics_chemistry:point_groups:Th|h]] | [[physics_chemistry:point_groups:Td|T]][[physics_chemistry:point_groups:Td|d]] | [[physics_chemistry:point_groups:O|O]] | [[physics_chemistry:point_groups:Oh|O]][[physics_chemistry:point_groups:Oh|h]] | [[physics_chemistry:point_groups:I|I]] | [[physics_chemistry:point_groups:Ih|I]][[physics_chemistry:point_groups:Ih|h]] | ^Linear groups | [[physics_chemistry:point_groups:cinfv|C]][[physics_chemistry:point_groups:cinfv|$\infty$v]] | [[physics_chemistry:point_groups:cinfv|D]][[physics_chemistry:point_groups:dinfh|$\infty$h]] | | | | | | ###