====== Error while Calculating RIXS ====== ;;# asked by [[mailto:galo.paez-fajardo@warwick.ac.uk|Galo Paez Fajardo]] (2024/03/19 18:40) ;;# == == Running Quanty on Windows I got this error when: "On entry to DSYEVDSafe minimumPrecisionMIA parameter number 5 had an illegal value" and "On entry to DSYEV Safe minimumPrecisionM parameter number 5 had an illegal value" System Windows 11, 64-bit operating system, AMD Ryzen 9 4900HS with Radeon Graphics 3.00 GHz, 16.0 GB RAM QuantyWin64.exe summer 2022 version Quanty input file Verbosity(0) -- here we calculate the 2p to 3d x-ray absorption of NiO within the Ligand-field theory -- approximation. The first part of the script is very much the same as calculating -- the ground-state with the addition that we now also need a 2p core shell in the basis -- from the previous example we know that within NiO there are 3 states close to each other -- and then there is an energy gap of about 1 eV. We thus only need to consider the 3 -- lowest states (Npsi=3 later on) NF=26 NB=0 IndexDn_2p={ 0, 2, 4} IndexUp_2p={ 1, 3, 5} IndexDn_3d={ 6, 8,10,12,14} IndexUp_3d={ 7, 9,11,13,15} IndexDn_Ld={16,18,20,22,24} IndexUp_Ld={17,19,21,23,25} -- angular momentum operators on the d-shell OppSx_3d =NewOperator("Sx" ,NF, IndexUp_3d, IndexDn_3d) OppSy_3d =NewOperator("Sy" ,NF, IndexUp_3d, IndexDn_3d) OppSz_3d =NewOperator("Sz" ,NF, IndexUp_3d, IndexDn_3d) OppSsqr_3d =NewOperator("Ssqr" ,NF, IndexUp_3d, IndexDn_3d) OppSplus_3d=NewOperator("Splus",NF, IndexUp_3d, IndexDn_3d) OppSmin_3d =NewOperator("Smin" ,NF, IndexUp_3d, IndexDn_3d) OppLx_3d =NewOperator("Lx" ,NF, IndexUp_3d, IndexDn_3d) OppLy_3d =NewOperator("Ly" ,NF, IndexUp_3d, IndexDn_3d) OppLz_3d =NewOperator("Lz" ,NF, IndexUp_3d, IndexDn_3d) OppLsqr_3d =NewOperator("Lsqr" ,NF, IndexUp_3d, IndexDn_3d) OppLplus_3d=NewOperator("Lplus",NF, IndexUp_3d, IndexDn_3d) OppLmin_3d =NewOperator("Lmin" ,NF, IndexUp_3d, IndexDn_3d) OppJx_3d =NewOperator("Jx" ,NF, IndexUp_3d, IndexDn_3d) OppJy_3d =NewOperator("Jy" ,NF, IndexUp_3d, IndexDn_3d) OppJz_3d =NewOperator("Jz" ,NF, IndexUp_3d, IndexDn_3d) OppJsqr_3d =NewOperator("Jsqr" ,NF, IndexUp_3d, IndexDn_3d) OppJplus_3d=NewOperator("Jplus",NF, IndexUp_3d, IndexDn_3d) OppJmin_3d =NewOperator("Jmin" ,NF, IndexUp_3d, IndexDn_3d) Oppldots_3d=NewOperator("ldots",NF, IndexUp_3d, IndexDn_3d) -- Angular momentum operators on the Ligand shell OppSx_Ld =NewOperator("Sx" ,NF, IndexUp_Ld, IndexDn_Ld) OppSy_Ld =NewOperator("Sy" ,NF, IndexUp_Ld, IndexDn_Ld) OppSz_Ld =NewOperator("Sz" ,NF, IndexUp_Ld, IndexDn_Ld) OppSsqr_Ld =NewOperator("Ssqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppSplus_Ld=NewOperator("Splus",NF, IndexUp_Ld, IndexDn_Ld) OppSmin_Ld =NewOperator("Smin" ,NF, IndexUp_Ld, IndexDn_Ld) OppLx_Ld =NewOperator("Lx" ,NF, IndexUp_Ld, IndexDn_Ld) OppLy_Ld =NewOperator("Ly" ,NF, IndexUp_Ld, IndexDn_Ld) OppLz_Ld =NewOperator("Lz" ,NF, IndexUp_Ld, IndexDn_Ld) OppLsqr_Ld =NewOperator("Lsqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppLplus_Ld=NewOperator("Lplus",NF, IndexUp_Ld, IndexDn_Ld) OppLmin_Ld =NewOperator("Lmin" ,NF, IndexUp_Ld, IndexDn_Ld) OppJx_Ld =NewOperator("Jx" ,NF, IndexUp_Ld, IndexDn_Ld) OppJy_Ld =NewOperator("Jy" ,NF, IndexUp_Ld, IndexDn_Ld) OppJz_Ld =NewOperator("Jz" ,NF, IndexUp_Ld, IndexDn_Ld) OppJsqr_Ld =NewOperator("Jsqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppJplus_Ld=NewOperator("Jplus",NF, IndexUp_Ld, IndexDn_Ld) OppJmin_Ld =NewOperator("Jmin" ,NF, IndexUp_Ld, IndexDn_Ld) -- total angular momentum OppSx = OppSx_3d + OppSx_Ld OppSy = OppSy_3d + OppSy_Ld OppSz = OppSz_3d + OppSz_Ld OppSsqr = OppSx * OppSx + OppSy * OppSy + OppSz * OppSz OppLx = OppLx_3d + OppLx_Ld OppLy = OppLy_3d + OppLy_Ld OppLz = OppLz_3d + OppLz_Ld OppLsqr = OppLx * OppLx + OppLy * OppLy + OppLz * OppLz OppJx = OppJx_3d + OppJx_Ld OppJy = OppJy_3d + OppJy_Ld OppJz = OppJz_3d + OppJz_Ld OppJsqr = OppJx * OppJx + OppJy * OppJy + OppJz * OppJz -- define the coulomb operator -- we here define the part depending on F0 seperately from the part depending on F2 -- when summing we can put in the numerical values of the slater integrals OppF0_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {1,0,0}) OppF2_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,1,0}) OppF4_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,0,1}) -- define onsite energies - crystal field -- Akm = {{k1,m1,Akm1},{k2,m2,Akm2}, ... } Akm = PotentialExpandedOnClm("Oh", 2, {0.6,-0.4}) OpptenDq_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OpptenDq_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {1,0}) OppNeg_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OppNeg_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {0,1}) OppNt2g_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OppNt2g_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) OppNUp_2p = NewOperator("Number", NF, IndexUp_2p, IndexUp_2p, {1,1,1}) OppNDn_2p = NewOperator("Number", NF, IndexDn_2p, IndexDn_2p, {1,1,1}) OppN_2p = OppNUp_2p + OppNDn_2p OppNUp_3d = NewOperator("Number", NF, IndexUp_3d, IndexUp_3d, {1,1,1,1,1}) OppNDn_3d = NewOperator("Number", NF, IndexDn_3d, IndexDn_3d, {1,1,1,1,1}) OppN_3d = OppNUp_3d + OppNDn_3d OppNUp_Ld = NewOperator("Number", NF, IndexUp_Ld, IndexUp_Ld, {1,1,1,1,1}) OppNDn_Ld = NewOperator("Number", NF, IndexDn_Ld, IndexDn_Ld, {1,1,1,1,1}) OppN_Ld = OppNUp_Ld + OppNDn_Ld -- define L-d interaction Akm = PotentialExpandedOnClm("Oh", 2, {1,0}) OppVeg = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {0,1}) OppVt2g = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) -- core valence interaction Oppcldots= NewOperator("ldots", NF, IndexUp_2p, IndexDn_2p) OppUpdF0 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {1,0}, {0,0}) OppUpdF2 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,1}, {0,0}) OppUpdG1 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {1,0}) OppUpdG3 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {0,1}) -- dipole transition t=math.sqrt(1/2) -- x polarized light is defined as x = Cos[phi]Sin[theta] = sqrt(1/2) ( C_1^{(-1)} - C_1^{(1)}) Akm = {{1,-1,t},{1, 1,-t}} TXASx = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) -- y polarized light is defined as y = Sin[phi]Sin[theta] = sqrt(1/2) I ( C_1^{(-1)} + C_1^{(1)}) Akm = {{1,-1,t*I},{1, 1,t*I}} TXASy = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) -- z polarized light is defined as z = Cos[theta] = C_1^{(0)} Akm = {{1,0,1}} TXASz = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) TXASr = t*(TXASx - I * TXASy) TXASl =-t*(TXASx + I * TXASy) -- the 3d to 2p dipole transition is the conjugate transpose of the 2p to 3d dipole transition TXASx = ConjugateTranspose(TXASx) TXASy = ConjugateTranspose(TXASy) TXASz = ConjugateTranspose(TXASz) TXASl = ConjugateTranspose(TXASl) TXASr = ConjugateTranspose(TXASr) -- We follow the energy definitions as introduced in the group of G.A. Sawatzky (Groningen) -- J. Zaanen, G.A. Sawatzky, and J.W. Allen PRL 55, 418 (1985) -- for parameters of specific materials see -- A.E. Bockquet et al. PRB 55, 1161 (1996) -- After some initial discussion the energies U and Delta refer to the center of a configuration -- The L^10 d^n configuration has an energy 0 -- The L^9 d^n+1 configuration has an energy Delta -- The L^8 d^n+2 configuration has an energy 2*Delta+Udd -- -- If we relate this to the onsite energy of the L and d orbitals we find -- 10 eL + n ed + n(n-1) U/2 == 0 -- 9 eL + (n+1) ed + (n+1)n U/2 == Delta -- 8 eL + (n+2) ed + (n+1)(n+2) U/2 == 2*Delta+U -- 3 equations with 2 unknowns, but with interdependence yield: -- ed = (10*Delta-nd*(19+nd)*U/2)/(10+nd) -- eL = nd*((1+nd)*Udd/2-Delta)/(10+nd) -- -- For the final state we/they defined -- The 2p^5 L^10 d^n+1 configuration has an energy 0 -- The 2p^5 L^9 d^n+2 configuration has an energy Delta + Udd - Upd -- The 2p^5 L^8 d^n+3 configuration has an energy 2*Delta + 3*Udd - 2*Upd -- -- If we relate this to the onsite energy of the p and d orbitals we find -- 6 ep + 10 eL + n ed + n(n-1) Udd/2 + 6 n Upd == 0 -- 6 ep + 9 eL + (n+1) ed + (n+1)n Udd/2 + 6 (n+1) Upd == Delta -- 6 ep + 8 eL + (n+2) ed + (n+1)(n+2) Udd/2 + 6 (n+2) Upd == 2*Delta+Udd -- 5 ep + 10 eL + (n+1) ed + (n+1)(n) Udd/2 + 5 (n+1) Upd == 0 -- 5 ep + 9 eL + (n+2) ed + (n+2)(n+1) Udd/2 + 5 (n+2) Upd == Delta+Udd-Upd -- 5 ep + 8 eL + (n+3) ed + (n+3)(n+2) Udd/2 + 5 (n+3) Upd == 2*Delta+3*Udd-2*Upd -- 6 equations with 3 unknowns, but with interdependence yield: -- epfinal = (10*Delta + (1+nd)*(nd*Udd/2-(10+nd)*Upd) / (16+nd) -- edfinal = (10*Delta - nd*(31+nd)*Udd/2-90*Upd) / (16+nd) -- eLfinal = ((1+nd)*(nd*Udd/2+6*Upd)-(6+nd)*Delta) / (16+nd) -- -- -- -- note that ed-ep = Delta - nd * U and not Delta -- note furthermore that ep and ed here are defined for the onsite energy if the system had -- locally nd electrons in the d-shell. In DFT or Hartree Fock the d occupation is in the end not -- nd and thus the onsite energy of the Kohn-Sham orbitals is not equal to ep and ed in model -- calculations. -- -- note furthermore that ep and eL actually should be different for most systems. We happily ignore this fact -- -- We normally take U and Delta as experimentally determined parameters -- number of electrons (formal valence) nd = 8 -- parameters from experiment (core level PES) Udd = 6.0 Upd = 7.0 Delta = 4.2 -- parameters obtained from DFT (PRB 85, 165113 (2012)) F2dd = 10.622 F4dd = 6.636 F2pd = 6.68 G1pd = 5.066 G3pd = 2.882 tenDq = 0.95 tenDqL = 1.44 Veg = 3.0 Vt2g = 1.74 zeta_3d = 0.091 zeta_2p = 11.21 Bz = 0.000001 --Hz = 0.120 ed = (10*Delta-nd*(19+nd)*Udd/2)/(10+nd) eL = nd*((1+nd)*Udd/2-Delta)/(10+nd) epfinal = (10*Delta + (1+nd)*(nd*Udd/2-(10+nd)*Upd)) / (16+nd) edfinal = (10*Delta - nd*(31+nd)*Udd/2-90*Upd) / (16+nd) eLfinal = ((1+nd)*(nd*Udd/2+6*Upd) - (6+nd)*Delta) / (16+nd) F0dd = Udd + (F2dd+F4dd) * 2/63 F0pd = Upd + (1/15)*G1pd + (3/70)*G3pd Hamiltonian = F0dd*OppF0_3d + F2dd*OppF2_3d + F4dd*OppF4_3d + zeta_3d*Oppldots_3d + Bz*(2*OppSz_3d + OppLz_3d) + tenDq*OpptenDq_3d + tenDqL*OpptenDq_Ld + Veg * OppVeg + Vt2g * OppVt2g + ed * OppN_3d + eL * OppN_Ld -- Hz * OppSz_3d + XASHamiltonian = F0dd*OppF0_3d + F2dd*OppF2_3d + F4dd*OppF4_3d + zeta_3d*Oppldots_3d + Bz*(2*OppSz_3d + OppLz_3d) + tenDq*OpptenDq_3d + tenDqL*OpptenDq_Ld + Veg * OppVeg + Vt2g * OppVt2g + edfinal * OppN_3d + eLfinal * OppN_Ld + epfinal * OppN_2p + zeta_2p * Oppcldots + F0pd * OppUpdF0 + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3 -- Hz * OppSz_3d -- we now can create the lowest Npsi eigenstates: Npsi = 3 -- in order to make sure we have a filling of nd electrons we need to define some restrictions StartRestrictions = {NF, NB, {"000000 1111111111 0000000000",nd,nd}, {"111111 0000000000 0000000000",6,6}, {"000000 0000000000 1111111111",10,10}} psiList = Eigensystem(Hamiltonian, StartRestrictions, Npsi) oppList={Hamiltonian, OppSsqr, OppLsqr, OppJsqr, OppSz_3d, OppLz_3d, Oppldots_3d, OppF2_3d, OppF4_3d, OppNUp_2p, OppNDn_2p, OppNeg_3d, OppNt2g_3d, OppNeg_Ld, OppNt2g_Ld, OppN_3d} -- print of some expectation values print(" # "); for i = 1,#psiList do io.write(string.format("%3i ",i)) for j = 1,#oppList do expectationvalue = Chop(psiList[i]*oppList[j]*psiList[i]) io.write(string.format("%8.3f ",expectationvalue)) end io.write("\n") end -- and we calculate the RIXS spectra. Note that in order to calculate RIXS you need to -- specify two Hamiltonians. -- These calculations can be lengthy and one should think that for each incoming energy -- (E1) one needs to do a new calculation. In this case there are thus 120 calculations RIXSSpectra = CreateResonantSpectra(XASHamiltonian, Hamiltonian, TXASx, TXASy, psiList[1], {{"Emin1",-15}, {"Emax1",25}, {"NE1",240}, {"Gamma1",0.5}, {"Emin2",-0.5}, {"Emax2",7.5}, {"NE2",8000}, {"Gamma2",0.05}}) RIXSSpectra.Print({{"file", "Ni3d8_1_RIXS.dat"}}) ~~DISCUSSION|Answers~~