-- The example on Fluorescence yield, RIXS and non-resonant IXS all need a very similar -- starting point. We need to define the Ground-state and some operators on this state. -- We need to define Hamiltonians with either a 2p or 3s core hole and interactions between -- these. -- Here we create a file that is included in tutorials later Verbosity(0) NF=28 NB=0 IndexDn_2p={ 0, 2, 4} IndexUp_2p={ 1, 3, 5} IndexDn_3s={ 6} IndexUp_3s={ 7} IndexDn_3d={ 8,10,12,14,16} IndexUp_3d={ 9,11,13,15,17} IndexDn_Ld={18,20,22,24,26} IndexUp_Ld={19,21,23,25,27} -- angular momentum operators on the d-shell OppSx_3d =NewOperator("Sx" ,NF, IndexUp_3d, IndexDn_3d) OppSy_3d =NewOperator("Sy" ,NF, IndexUp_3d, IndexDn_3d) OppSz_3d =NewOperator("Sz" ,NF, IndexUp_3d, IndexDn_3d) OppSsqr_3d =NewOperator("Ssqr" ,NF, IndexUp_3d, IndexDn_3d) OppSplus_3d=NewOperator("Splus",NF, IndexUp_3d, IndexDn_3d) OppSmin_3d =NewOperator("Smin" ,NF, IndexUp_3d, IndexDn_3d) OppLx_3d =NewOperator("Lx" ,NF, IndexUp_3d, IndexDn_3d) OppLy_3d =NewOperator("Ly" ,NF, IndexUp_3d, IndexDn_3d) OppLz_3d =NewOperator("Lz" ,NF, IndexUp_3d, IndexDn_3d) OppLsqr_3d =NewOperator("Lsqr" ,NF, IndexUp_3d, IndexDn_3d) OppLplus_3d=NewOperator("Lplus",NF, IndexUp_3d, IndexDn_3d) OppLmin_3d =NewOperator("Lmin" ,NF, IndexUp_3d, IndexDn_3d) OppJx_3d =NewOperator("Jx" ,NF, IndexUp_3d, IndexDn_3d) OppJy_3d =NewOperator("Jy" ,NF, IndexUp_3d, IndexDn_3d) OppJz_3d =NewOperator("Jz" ,NF, IndexUp_3d, IndexDn_3d) OppJsqr_3d =NewOperator("Jsqr" ,NF, IndexUp_3d, IndexDn_3d) OppJplus_3d=NewOperator("Jplus",NF, IndexUp_3d, IndexDn_3d) OppJmin_3d =NewOperator("Jmin" ,NF, IndexUp_3d, IndexDn_3d) Oppldots_3d=NewOperator("ldots",NF, IndexUp_3d, IndexDn_3d) -- Angular momentum operators on the Ligand shell OppSx_Ld =NewOperator("Sx" ,NF, IndexUp_Ld, IndexDn_Ld) OppSy_Ld =NewOperator("Sy" ,NF, IndexUp_Ld, IndexDn_Ld) OppSz_Ld =NewOperator("Sz" ,NF, IndexUp_Ld, IndexDn_Ld) OppSsqr_Ld =NewOperator("Ssqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppSplus_Ld=NewOperator("Splus",NF, IndexUp_Ld, IndexDn_Ld) OppSmin_Ld =NewOperator("Smin" ,NF, IndexUp_Ld, IndexDn_Ld) OppLx_Ld =NewOperator("Lx" ,NF, IndexUp_Ld, IndexDn_Ld) OppLy_Ld =NewOperator("Ly" ,NF, IndexUp_Ld, IndexDn_Ld) OppLz_Ld =NewOperator("Lz" ,NF, IndexUp_Ld, IndexDn_Ld) OppLsqr_Ld =NewOperator("Lsqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppLplus_Ld=NewOperator("Lplus",NF, IndexUp_Ld, IndexDn_Ld) OppLmin_Ld =NewOperator("Lmin" ,NF, IndexUp_Ld, IndexDn_Ld) OppJx_Ld =NewOperator("Jx" ,NF, IndexUp_Ld, IndexDn_Ld) OppJy_Ld =NewOperator("Jy" ,NF, IndexUp_Ld, IndexDn_Ld) OppJz_Ld =NewOperator("Jz" ,NF, IndexUp_Ld, IndexDn_Ld) OppJsqr_Ld =NewOperator("Jsqr" ,NF, IndexUp_Ld, IndexDn_Ld) OppJplus_Ld=NewOperator("Jplus",NF, IndexUp_Ld, IndexDn_Ld) OppJmin_Ld =NewOperator("Jmin" ,NF, IndexUp_Ld, IndexDn_Ld) -- total angular momentum OppSx = OppSx_3d + OppSx_Ld OppSy = OppSy_3d + OppSy_Ld OppSz = OppSz_3d + OppSz_Ld OppSsqr = OppSx * OppSx + OppSy * OppSy + OppSz * OppSz OppLx = OppLx_3d + OppLx_Ld OppLy = OppLy_3d + OppLy_Ld OppLz = OppLz_3d + OppLz_Ld OppLsqr = OppLx * OppLx + OppLy * OppLy + OppLz * OppLz OppJx = OppJx_3d + OppJx_Ld OppJy = OppJy_3d + OppJy_Ld OppJz = OppJz_3d + OppJz_Ld OppJsqr = OppJx * OppJx + OppJy * OppJy + OppJz * OppJz -- define the coulomb operator -- we here define the part depending on F0 seperately from the part depending on F2 -- when summing we can put in the numerical values of the slater integrals OppF0_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {1,0,0}) OppF2_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,1,0}) OppF4_3d =NewOperator("U", NF, IndexUp_3d, IndexDn_3d, {0,0,1}) -- define onsite energies - crystal field -- Akm = {{k1,m1,Akm1},{k2,m2,Akm2}, ... } Akm = PotentialExpandedOnClm("Oh", 2, {0.6,-0.4}) OpptenDq_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OpptenDq_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {1,0}) OppNeg_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OppNeg_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {0,1}) OppNt2g_3d = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, Akm) OppNt2g_Ld = NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, Akm) OppNUp_2p = NewOperator("Number", NF, IndexUp_2p, IndexUp_2p, {1,1,1}) OppNDn_2p = NewOperator("Number", NF, IndexDn_2p, IndexDn_2p, {1,1,1}) OppN_2p = OppNUp_2p + OppNDn_2p OppNUp_3s = NewOperator("Number", NF, IndexUp_3s, IndexUp_3s, {1}) OppNDn_3s = NewOperator("Number", NF, IndexDn_3s, IndexDn_3s, {1}) OppN_3s = OppNUp_3s + OppNDn_3s OppNUp_3d = NewOperator("Number", NF, IndexUp_3d, IndexUp_3d, {1,1,1,1,1}) OppNDn_3d = NewOperator("Number", NF, IndexDn_3d, IndexDn_3d, {1,1,1,1,1}) OppN_3d = OppNUp_3d + OppNDn_3d OppNUp_Ld = NewOperator("Number", NF, IndexUp_Ld, IndexUp_Ld, {1,1,1,1,1}) OppNDn_Ld = NewOperator("Number", NF, IndexDn_Ld, IndexDn_Ld, {1,1,1,1,1}) OppN_Ld = OppNUp_Ld + OppNDn_Ld -- define L-d interaction Akm = PotentialExpandedOnClm("Oh", 2, {1,0}) OppVeg = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) Akm = PotentialExpandedOnClm("Oh", 2, {0,1}) OppVt2g = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_Ld, IndexDn_Ld,Akm) + NewOperator("CF", NF, IndexUp_Ld, IndexDn_Ld, IndexUp_3d, IndexDn_3d, Akm) -- core valence interaction 2p to 3d Oppcldots= NewOperator("ldots", NF, IndexUp_2p, IndexDn_2p) OppUpdF0 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {1,0}, {0,0}) OppUpdF2 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,1}, {0,0}) OppUpdG1 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {1,0}) OppUpdG3 = NewOperator("U", NF, IndexUp_2p, IndexDn_2p, IndexUp_3d, IndexDn_3d, {0,0}, {0,1}) -- core valence interaction 3s to 3d OppUsdF0 = NewOperator("U", NF, IndexUp_3s, IndexDn_3s, IndexUp_3d, IndexDn_3d, {1}, {0}) OppUsdG2 = NewOperator("U", NF, IndexUp_3s, IndexDn_3s, IndexUp_3d, IndexDn_3d, {0}, {1}) -- next we define the dipole operator. The dipole operator is given as epsilon.r -- with epsilon the polarization vector of the light and r the unit position vector -- We can expand the position vector on (renormalized) spherical harmonics and use -- the crystal-field operator to create the dipole operator. -- we both define the dipole operator between the 2p and 3d shell as well as the dipole -- operator between the 3s and 2p shell -- x polarized light is defined as x = Cos[phi]Sin[theta] = sqrt(1/2) ( C_1^{(-1)} - C_1^{(1)}) Akm = {{1,-1,sqrt(1/2)},{1, 1,-sqrt(1/2)}} T2p3dx = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) T3s2px = NewOperator("CF", NF, IndexUp_2p, IndexDn_2p, IndexUp_3s, IndexDn_3s, Akm) -- y polarized light is defined as y = Sin[phi]Sin[theta] = sqrt(1/2) I ( C_1^{(-1)} + C_1^{(1)}) Akm = {{1,-1,sqrt(1/2)*I},{1, 1,sqrt(1/2)*I}} T2p3dy = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) T3s2py = NewOperator("CF", NF, IndexUp_2p, IndexDn_2p, IndexUp_3s, IndexDn_3s, Akm) -- z polarized light is defined as z = Cos[theta] = C_1^{(0)} Akm = {{1,0,1}} T2p3dz = NewOperator("CF", NF, IndexUp_3d, IndexDn_3d, IndexUp_2p, IndexDn_2p, Akm) T3s2pz = NewOperator("CF", NF, IndexUp_2p, IndexDn_2p, IndexUp_3s, IndexDn_3s, Akm) -- besides linear polarized light one can define circular polarized light as the sum of -- x and y polarizations with complex prefactors T2p3dr = sqrt(1/2)*(T2p3dx - I * T2p3dy) T2p3dl =-sqrt(1/2)*(T2p3dx + I * T2p3dy) -- we can remove zero's from the dipole operator by chopping it. T2p3dr.Chop() T2p3dl.Chop() -- the 3d to 2p dipole transition is the conjugate transpose of the 2p to 3d dipole transition T3d2px = ConjugateTranspose(T2p3dx) T3d2py = ConjugateTranspose(T2p3dy) T3d2pz = ConjugateTranspose(T2p3dz) T3d2pl = ConjugateTranspose(T2p3dl) T3d2pr = ConjugateTranspose(T2p3dr)